Download citation
Download citation
link to html
The nacnac (pentane-2,4-diiminato) ligand in the title compound, [Zr(C21H25N2)Cl3(C4H8O)], displays a κ2-coordination to the Zr center. Three chlorido ligands and a coordinated tetra­hydro­furan (THF) mol­ecule complete the octa­hedral environment of the metal. Despite the C2 symmetry observed in the 1H NMR spectrum, the THF mol­ecule is found trans to one of the N atoms of the nacnac ligand. The asymmetric unit contains two molecules. In one THF ligand one C atom and four H atoms are disordered over two sites in the ratio ca 0.58:0.42.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704322X/om2160sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704322X/om2160Isup2.hkl
Contains datablock I

CCDC reference: 667224

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.031
  • wR factor = 0.088
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95 PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 1
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.500 0.640 Tmin and Tmax expected: 0.417 0.641 RR = 1.200 Please check that your absorption correction is appropriate. CELLV02_ALERT_1_C The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 2 Calculated cell volume su = 18.57 Cell volume su given = 16.00 PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.20 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C24 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25A PLAT301_ALERT_3_C Main Residue Disorder ......................... 2.00 Perc. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 36.00 A   3
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 72.08 From the CIF: _reflns_number_total 9929 From the CIF: _diffrn_reflns_limit_ max hkl 16. 16. 19. From the CIF: _diffrn_reflns_limit_ min hkl -16. -14. -20. TEST1: Expected hkl limits for theta max Calculated maximum hkl 16. 18. 20. Calculated minimum hkl -16. -18. -20. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 11
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound was first synthesized by Jin & Novak (2000), although no experimental or spectroscopic data was provided. Our synthesis followed the same procedure described there and for the synthesis of other (nacnac)ZrCl3(THF) complexes (Kakaliou et al., 1999), i.e. reaction of the deprotonated nacnac ligand (nacnac = pentane-2,4-diiminato) with ZrCl4(THF)2.

Two identical, independent molecules are present in the asymmetric unit. Only the geometry of one of those is described in detail. Apart from the missing disorder of the THF molecule, no significant differences were observed in the second molecule.

The zirconium center has a slightly distorted octahedral coordination geometry with L–Zr–L bond angles ranging from 83° to 99°. The coordination of the nanac ligand is best described as an in-plane η2-coordination via the nitrogen lone pairs. The ligand backbone is nearly planar, with a slight bending of the methyl groups and the central carbon atom C3 out of the ligand plane, probalby due to steric interaction with each other. Bond distances in the ligand backbone are in agreement with a strong electron delocalization. The zirconium center is slightly bend out of the ligand mean plane ( (Zr1,N1,N2),(N1,N2,C2–C4)=41°), a common feature for η2-coordinated nacnac ligands in penta-coordinated or octahedral complexes (Rahim et al., 1998; Qian et al., 1999; Kakaliou et al., 1999; Franceschini et al., 2003; Hamaki et al., 2006). Long Zr—C distances for C2–C4 (> 3.1 Å) indicate, however, that this is not due to coordination of the ligand π-system to the metal center, but rather to the steric strain introduced by the in-plane coordination of the metal center. This is further supported by a N–Zr–N angle smaller than 90° ((N1–Zr1–N2)=83.11 (7)°) and slightly widened C3–C–N angles ((N1–C2–C3)=123.5 (2)°, (N2–C4–C3)=123.6 (2)°).

One THF molecule, coordinated trans to N2, completes the octahedral coordination of the metal center. Although penta-coordinated (nacnac)ZrCl3 complexes can be isolated in the absence of THF, coordination of THF to a (nacnac)ZrCl3 fragment has been reported before (Kakaliou et al., 1999; Jin & Novak, 2000). In all cases, THF preferred a coordination trans to nitrogen. As also observed in these complexes, the Zr—N2 distance in the title compound is slightly longer than Zr—N1 (2.218 (2) and 2.176 (2) Å, respectively), in agreement with a stronger trans effect of chlorine compared to oxygen.

Of the two possible coordination modes of the nacnac ligand (η2–in plane or ηx–side on), the η2-coordination seems to be preferred when an octahedral coordination of the metal center can be achieved (Franceschini et al., 2003 (BEDLUS, BEDMAZ), Kakaliou et al., 1999 (LIRDOF), Rahim et al., 1998 (SEQXER, SEQXIV), Hamaki et al., 2006 (DEGWIW), Jin & Novak, 2000). For penta-coordinated zirconium complexes both, η2–coordination (LIRCIY, LIRCOE, LIRDUL: Kakaliou et al., 1999; MAPJIW, MAPJUI: Qian et al., 1999) and higher coordination modes (FAPBUU, FAPCEF, FAPCAB, FAPCIJ: Basuli et al., 2004) have been observed. When a second, planar coordinated ligand such as cyclopentadienyl or indenyl is present, the nacnac ligand always prefers higher coordination modes (Vollmerhaus et al., 2000 (QIPGUR); Rahim et al., 1998 (SEQXOB); Verguet, Fortuné et al., 2007; Verguet, Oguadinma & Schaper, 2007). (Codes refer to entries in the Cambridge Structural Database). It should be noted that a "higher coordination mode" does not necessarily correspond to a cyclopentadienyl–like η5–coordination (Verguet, Fortuné et al., 2007).

Related literature top

For other zirconium complexes containing an κ2–coordinated nacnac ligand, see: Rahim et al. (1998); Kakaliou et al. (1999); Qian et al. (1999); Jin & Novak (2000); Franceschini et al. (2003); Hamaki et al. (2006). For zirconium complexes containing nacnac ligands in other coordination modes, see: Rahim et al. (1998); Vollmerhaus et al. (2000); Basuli et al. (2004); Verguet, Fortuné et al. (2007); Verguet, Oguadinma & Schaper (2007).

For related literature, see: Spek (2000).

Experimental top

To a solution of 7.8 g (25 mmol) nacnacH in THF, 11.5 ml n-BuLi in hexane (2.7 M, 27.5 mmol) were added at -78°C. The solution was allowed to warm to room temperature over night. Evaporation of the solvent yield a red-brown residue, which was washed two times with hexane to give 7.3 g nacnacLi(THF) (76%) as a yellow powder.

RMN 1H (300 MHz, C6D6): 7.08–6.92 (m, 6H, CH [C6H3Me2]), 4.97 (s, 1H, CH [nacnac]), 2.93 (br s, 4H, THF), 2.21 (s, 12H, CH3 [C6H3Me2]), 1.81 (s, 6H, CH3 [nacnac]), 0.92 (br s, 4H, THF).

A solution of 2.94 g ZrCl4(THF)2 (7.8 mmol) in 20 ml toluene were added to a solution of 3.0 g nacnacLi(THF) (7.8 mmol) in 20 ml toluene. After stirring at room temperature for two hours the brown suspension is filtered and the precipitate washed with 4 ml toluene. The filtrates were combined and their volume reduced to 15 ml. 15 ml hexane were layered on top of the solution. After several days 4.0 g (89%) of the title compound were isolated as yellow-brown microcrystals.

RMN 1H (300 MHz, C6D6): δ 6.94 (m, 6H, CH [C6H3Me2]), 5.55 (s, 1H, CH [nacnac]), 3.80 (br s, 4H, THF), 2.44 (s, 12H, CH3 [C6H3Me2]), 1.45 (s, 6H, CH3 [nacnac]), 1.01 (br s, 4H, THF).

Refinement top

All non-H atoms were refined by full-matrix least-squares with anisotropic displacement parameters. The THF molecule in one of the two independent molecules in the asymmetric unit was found to be disordered. The disorder was resolved and refined isotropic with appropriate restraints. Relative occupancies refined to 0.57:0.43. Although the neighbouring atoms C24 and O1 show slightly enlarged thermal ellipsoids, no disorder was refined for those atoms. The atoms C25A and C25B were refined with isotropic thermal parameters. The H atoms were generated geometrically (C—H 0.93 to 0.98, N—H 0.86 and O—H 0.82 Å) and were included in the refinement in the riding model approximation; their temperature factors were set to 1.5 times those of the equivalent isotropic temperature factors of the parent site (methyl) and 1.2 times for others. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2000).

Structure description top

The title compound was first synthesized by Jin & Novak (2000), although no experimental or spectroscopic data was provided. Our synthesis followed the same procedure described there and for the synthesis of other (nacnac)ZrCl3(THF) complexes (Kakaliou et al., 1999), i.e. reaction of the deprotonated nacnac ligand (nacnac = pentane-2,4-diiminato) with ZrCl4(THF)2.

Two identical, independent molecules are present in the asymmetric unit. Only the geometry of one of those is described in detail. Apart from the missing disorder of the THF molecule, no significant differences were observed in the second molecule.

The zirconium center has a slightly distorted octahedral coordination geometry with L–Zr–L bond angles ranging from 83° to 99°. The coordination of the nanac ligand is best described as an in-plane η2-coordination via the nitrogen lone pairs. The ligand backbone is nearly planar, with a slight bending of the methyl groups and the central carbon atom C3 out of the ligand plane, probalby due to steric interaction with each other. Bond distances in the ligand backbone are in agreement with a strong electron delocalization. The zirconium center is slightly bend out of the ligand mean plane ( (Zr1,N1,N2),(N1,N2,C2–C4)=41°), a common feature for η2-coordinated nacnac ligands in penta-coordinated or octahedral complexes (Rahim et al., 1998; Qian et al., 1999; Kakaliou et al., 1999; Franceschini et al., 2003; Hamaki et al., 2006). Long Zr—C distances for C2–C4 (> 3.1 Å) indicate, however, that this is not due to coordination of the ligand π-system to the metal center, but rather to the steric strain introduced by the in-plane coordination of the metal center. This is further supported by a N–Zr–N angle smaller than 90° ((N1–Zr1–N2)=83.11 (7)°) and slightly widened C3–C–N angles ((N1–C2–C3)=123.5 (2)°, (N2–C4–C3)=123.6 (2)°).

One THF molecule, coordinated trans to N2, completes the octahedral coordination of the metal center. Although penta-coordinated (nacnac)ZrCl3 complexes can be isolated in the absence of THF, coordination of THF to a (nacnac)ZrCl3 fragment has been reported before (Kakaliou et al., 1999; Jin & Novak, 2000). In all cases, THF preferred a coordination trans to nitrogen. As also observed in these complexes, the Zr—N2 distance in the title compound is slightly longer than Zr—N1 (2.218 (2) and 2.176 (2) Å, respectively), in agreement with a stronger trans effect of chlorine compared to oxygen.

Of the two possible coordination modes of the nacnac ligand (η2–in plane or ηx–side on), the η2-coordination seems to be preferred when an octahedral coordination of the metal center can be achieved (Franceschini et al., 2003 (BEDLUS, BEDMAZ), Kakaliou et al., 1999 (LIRDOF), Rahim et al., 1998 (SEQXER, SEQXIV), Hamaki et al., 2006 (DEGWIW), Jin & Novak, 2000). For penta-coordinated zirconium complexes both, η2–coordination (LIRCIY, LIRCOE, LIRDUL: Kakaliou et al., 1999; MAPJIW, MAPJUI: Qian et al., 1999) and higher coordination modes (FAPBUU, FAPCEF, FAPCAB, FAPCIJ: Basuli et al., 2004) have been observed. When a second, planar coordinated ligand such as cyclopentadienyl or indenyl is present, the nacnac ligand always prefers higher coordination modes (Vollmerhaus et al., 2000 (QIPGUR); Rahim et al., 1998 (SEQXOB); Verguet, Fortuné et al., 2007; Verguet, Oguadinma & Schaper, 2007). (Codes refer to entries in the Cambridge Structural Database). It should be noted that a "higher coordination mode" does not necessarily correspond to a cyclopentadienyl–like η5–coordination (Verguet, Fortuné et al., 2007).

For other zirconium complexes containing an κ2–coordinated nacnac ligand, see: Rahim et al. (1998); Kakaliou et al. (1999); Qian et al. (1999); Jin & Novak (2000); Franceschini et al. (2003); Hamaki et al. (2006). For zirconium complexes containing nacnac ligands in other coordination modes, see: Rahim et al. (1998); Vollmerhaus et al. (2000); Basuli et al. (2004); Verguet, Fortuné et al. (2007); Verguet, Oguadinma & Schaper (2007).

For related literature, see: Spek (2000).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid drawing of the title compound. Thermal ellipsoids are shown at 50% probability levels. Hydrogen atoms are omitted for clarity. Only one of the two independent molecules is shown.
[N,N'-bis(2,6-dimethylphenyl)pentane-2,4-diiminato-κ2N,N']\ trichlorido(tetrahydrofuran-κO)zirconium top
Crystal data top
[Zr(C21H25N2)Cl3(C4H8O)]Z = 4
Mr = 575.10F(000) = 1184
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 13.6082 (5) ÅCell parameters from 16709 reflections
b = 14.5970 (5) Åθ = 4.1–71.5°
c = 16.3293 (6) ŵ = 6.35 mm1
α = 114.948 (2)°T = 150 K
β = 98.898 (2)°Plate, yellow
γ = 107.951 (2)°0.16 × 0.16 × 0.07 mm
V = 2641.04 (16) Å3
Data collection top
Bruker Smart 6000
diffractometer
9929 independent reflections
Radiation source: Rotating Anode9305 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.036
Detector resolution: 5.5 pixels mm-1θmax = 72.1°, θmin = 3.2°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1416
Tmin = 0.50, Tmax = 0.64l = 2019
36248 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0601P)2 + 1.3844P]
where P = (Fo2 + 2Fc2)/3
9929 reflections(Δ/σ)max = 0.001
589 parametersΔρmax = 0.61 e Å3
11 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Zr(C21H25N2)Cl3(C4H8O)]γ = 107.951 (2)°
Mr = 575.10V = 2641.04 (16) Å3
Triclinic, P1Z = 4
a = 13.6082 (5) ÅCu Kα radiation
b = 14.5970 (5) ŵ = 6.35 mm1
c = 16.3293 (6) ÅT = 150 K
α = 114.948 (2)°0.16 × 0.16 × 0.07 mm
β = 98.898 (2)°
Data collection top
Bruker Smart 6000
diffractometer
9929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9305 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.64Rint = 0.036
36248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03111 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.99Δρmax = 0.61 e Å3
9929 reflectionsΔρmin = 1.25 e Å3
589 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Comments on remaining CHECKCIF errors:

All geometrically accessible data was collected. A data completeness of 0.96 was due to geometrical constraints of the instrument (particularly severe for triclinic space groups) and could not be improved. Errors in the Tmax/Tmin ratio are probably due to inaccurate determination of crystal dimensions.

Supplied e.s.d. values for the cell parameters are correct. Differences between calculated and supplied values arise most probably from the rounding of cell parameters in the CIF file. No additional electron density was found in solvent accessible voids.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31188 (13)0.27645 (15)0.82802 (11)0.0356 (4)
O20.83397 (13)0.29499 (14)0.37605 (12)0.0300 (3)
Zr10.168238 (14)0.257712 (14)0.883656 (11)0.02274 (6)
Zr20.690471 (13)0.266619 (14)0.429264 (11)0.02207 (6)
Cl10.81986 (5)0.40340 (5)0.58818 (4)0.04192 (15)
Cl20.72529 (4)0.11247 (5)0.42947 (4)0.03114 (12)
Cl30.67650 (4)0.41924 (4)0.41025 (4)0.02919 (11)
Cl40.09555 (5)0.06236 (5)0.76288 (4)0.03778 (13)
Cl50.27106 (4)0.22364 (5)0.99607 (4)0.03309 (12)
Cl60.26375 (4)0.45918 (4)0.99344 (4)0.03234 (12)
N10.02755 (15)0.25160 (15)0.93244 (13)0.0255 (4)
N20.08358 (14)0.29748 (15)0.78438 (12)0.0246 (4)
N30.56673 (14)0.14635 (14)0.28439 (12)0.0234 (3)
N40.55027 (14)0.22025 (14)0.47524 (12)0.0232 (3)
C10.1057 (2)0.3230 (2)0.9896 (2)0.0385 (6)
H1A0.06950.34291.05520.058*
H1B0.16890.25100.95840.058*
H1C0.13020.37990.99100.058*
C20.02606 (18)0.31564 (18)0.93455 (16)0.0286 (4)
C30.01605 (19)0.37371 (19)0.88523 (17)0.0315 (5)
H3A0.04180.43050.90480.038*
C40.02727 (19)0.35953 (19)0.80996 (16)0.0306 (5)
C50.0018 (3)0.4131 (3)0.7534 (2)0.0503 (7)
H5A0.07020.46450.75610.075*
H5B0.04080.45420.78060.075*
H5C0.04070.35570.68670.075*
C60.00780 (18)0.18171 (19)0.97429 (16)0.0276 (4)
C70.04394 (19)0.22239 (19)1.07150 (16)0.0304 (5)
C80.0062 (2)0.1533 (2)1.10877 (18)0.0353 (5)
H8A0.04170.17781.17380.042*
C90.0812 (2)0.0505 (2)1.05422 (19)0.0377 (5)
H9A0.10590.00561.08170.045*
C100.1324 (2)0.0136 (2)0.95944 (19)0.0359 (5)
H10A0.19310.05680.92210.043*
C110.09697 (19)0.07760 (19)0.91753 (17)0.0310 (5)
C120.1335 (2)0.3371 (2)1.13648 (17)0.0391 (6)
H12A0.20050.33161.16150.059*
H12B0.11130.37801.18980.059*
H12C0.14710.37641.10050.059*
C130.1544 (2)0.0350 (2)0.81371 (18)0.0393 (6)
H13A0.22420.02880.79070.059*
H13B0.10830.01220.77590.059*
H13C0.16800.09410.80700.059*
C140.09836 (18)0.26843 (18)0.69140 (15)0.0267 (4)
C150.01671 (18)0.17145 (19)0.61125 (16)0.0282 (4)
C160.0319 (2)0.1401 (2)0.52222 (16)0.0330 (5)
H16A0.02120.07340.46740.040*
C170.1227 (2)0.2045 (2)0.51282 (17)0.0380 (5)
H17A0.13240.18140.45200.046*
C180.1996 (2)0.3029 (2)0.59173 (18)0.0384 (5)
H18A0.26090.34770.58410.046*
C190.18867 (19)0.3376 (2)0.68276 (16)0.0316 (5)
C200.08737 (18)0.1047 (2)0.61822 (16)0.0332 (5)
H20A0.06970.08460.66700.050*
H20B0.13050.03700.55620.050*
H20C0.12980.14910.63590.050*
C210.2722 (2)0.4483 (2)0.76503 (18)0.0409 (6)
H21A0.25280.46250.82320.061*
H21B0.27360.50720.75050.061*
H21C0.34470.44720.77490.061*
C220.42639 (17)0.34392 (19)0.89300 (16)0.0337 (5)
H22A0.42990.37270.96070.040*
H22B0.46220.40740.88380.040*
C230.4789 (2)0.2648 (2)0.8651 (2)0.0418 (6)
H23A0.47210.22550.90220.050*
H23B0.55740.30410.87590.050*
C240.4168 (2)0.1845 (3)0.7601 (2)0.0582 (8)
H24A0.46540.19010.72150.070*0.579 (15)
H24B0.38580.10720.74760.070*0.579 (15)
H24C0.45440.20990.72140.070*0.421 (15)
H24D0.41370.10990.74350.070*0.421 (15)
C25A0.3286 (4)0.2173 (5)0.7364 (2)0.0260 (13)*0.579 (15)
H25A0.35070.26660.70940.031*0.579 (15)
H25B0.26080.15110.68960.031*0.579 (15)
C25B0.3054 (4)0.1789 (7)0.7393 (4)0.040 (2)*0.421 (15)
H25C0.25140.10810.72860.048*0.421 (15)
H25D0.28490.18610.68220.048*0.421 (15)
C260.3907 (2)0.0875 (2)0.48075 (18)0.0361 (5)
H26A0.43280.09640.54010.054*
H26B0.33760.01000.43930.054*
H26C0.35200.13590.49580.054*
C270.46727 (17)0.11865 (18)0.43008 (15)0.0257 (4)
C280.44382 (18)0.03930 (17)0.33490 (15)0.0274 (4)
H28A0.39500.03440.31510.033*
C290.48297 (17)0.05433 (17)0.26492 (15)0.0258 (4)
C300.4222 (2)0.03666 (19)0.16210 (16)0.0339 (5)
H30A0.47490.05240.12980.051*
H30B0.37770.01260.12960.051*
H30C0.37470.10400.16010.051*
C310.55240 (18)0.30167 (17)0.56685 (15)0.0255 (4)
C320.49824 (18)0.36925 (18)0.56688 (16)0.0277 (4)
C330.5087 (2)0.45453 (19)0.65476 (17)0.0334 (5)
H33A0.47320.50160.65620.040*
C340.5702 (2)0.47140 (19)0.73990 (17)0.0370 (5)
H34A0.57860.53120.79910.044*
C350.6193 (2)0.4010 (2)0.73850 (16)0.0354 (5)
H35A0.65980.41200.79730.043*
C360.61043 (19)0.31394 (19)0.65228 (16)0.0300 (5)
C370.6616 (2)0.2368 (2)0.65460 (17)0.0359 (5)
H37A0.73030.27890.70850.054*
H37B0.67660.20260.59470.054*
H37C0.61130.17860.66210.054*
C380.42865 (19)0.3507 (2)0.47521 (16)0.0324 (5)
H38A0.39170.40070.49020.049*
H38B0.37390.27340.43770.049*
H38C0.47510.36580.43810.049*
C390.58412 (18)0.16308 (17)0.20537 (14)0.0258 (4)
C400.65758 (19)0.13058 (19)0.16161 (15)0.0298 (5)
C410.6829 (2)0.1631 (2)0.09567 (16)0.0359 (5)
H41A0.73360.14320.06620.043*
C420.6353 (2)0.2239 (2)0.07270 (16)0.0369 (5)
H42A0.65640.24900.03040.044*
C430.5570 (2)0.2483 (2)0.11125 (16)0.0340 (5)
H43A0.52170.28670.09240.041*
C440.52891 (18)0.21755 (18)0.17737 (15)0.0286 (4)
C450.44014 (19)0.2404 (2)0.21513 (16)0.0326 (5)
H45A0.40940.27560.18500.049*
H45B0.47070.29020.28460.049*
H45C0.38230.17040.20040.049*
C460.7061 (2)0.0582 (2)0.17975 (18)0.0365 (5)
H46A0.70010.06110.23970.055*
H46B0.78340.08520.18440.055*
H46C0.66640.01860.12690.055*
C470.9279 (2)0.2706 (3)0.4043 (2)0.0419 (6)
H47A0.90630.18940.37270.050*
H47B0.95470.30210.47450.050*
C481.0156 (2)0.3246 (2)0.3719 (2)0.0421 (6)
H48A1.05290.27620.34460.050*
H48B1.07080.39720.42580.050*
C490.9530 (2)0.3393 (2)0.29589 (17)0.0350 (5)
H49A1.00120.40010.28890.042*
H49B0.91920.26990.23310.042*
C500.8673 (2)0.3683 (2)0.33600 (17)0.0314 (5)
H50A0.89830.44750.38630.038*
H50B0.80460.35340.28510.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (8)0.0529 (10)0.0224 (8)0.0190 (8)0.0109 (7)0.0148 (7)
O20.0288 (8)0.0374 (9)0.0352 (8)0.0165 (7)0.0152 (7)0.0242 (7)
Zr10.02394 (10)0.02405 (10)0.01852 (10)0.01080 (7)0.00542 (7)0.00919 (8)
Zr20.02249 (10)0.02244 (10)0.01938 (10)0.00790 (7)0.00445 (7)0.01071 (7)
Cl10.0381 (3)0.0412 (3)0.0247 (3)0.0000 (2)0.0037 (2)0.0145 (2)
Cl20.0351 (3)0.0340 (3)0.0347 (3)0.0189 (2)0.0122 (2)0.0224 (2)
Cl30.0326 (3)0.0247 (2)0.0317 (3)0.0131 (2)0.0095 (2)0.0149 (2)
Cl40.0485 (3)0.0285 (3)0.0281 (3)0.0201 (2)0.0034 (2)0.0074 (2)
Cl50.0348 (3)0.0435 (3)0.0258 (2)0.0196 (2)0.0075 (2)0.0198 (2)
Cl60.0344 (3)0.0264 (3)0.0240 (2)0.0071 (2)0.0067 (2)0.0071 (2)
N10.0274 (9)0.0251 (9)0.0252 (9)0.0114 (7)0.0107 (7)0.0126 (7)
N20.0253 (9)0.0265 (9)0.0220 (8)0.0102 (7)0.0066 (7)0.0129 (7)
N30.0257 (9)0.0229 (8)0.0188 (8)0.0103 (7)0.0045 (7)0.0089 (7)
N40.0255 (9)0.0225 (9)0.0202 (8)0.0093 (7)0.0074 (7)0.0101 (7)
C10.0403 (13)0.0370 (13)0.0497 (15)0.0226 (11)0.0267 (12)0.0228 (12)
C20.0291 (11)0.0252 (10)0.0288 (11)0.0114 (9)0.0108 (9)0.0108 (9)
C30.0351 (12)0.0286 (11)0.0334 (12)0.0184 (10)0.0118 (10)0.0140 (9)
C40.0346 (12)0.0287 (11)0.0287 (11)0.0150 (9)0.0072 (9)0.0143 (9)
C50.077 (2)0.0609 (18)0.0466 (15)0.0501 (17)0.0298 (15)0.0371 (14)
C60.0300 (11)0.0282 (11)0.0314 (11)0.0150 (9)0.0169 (9)0.0161 (9)
C70.0350 (12)0.0342 (12)0.0292 (11)0.0189 (10)0.0177 (10)0.0163 (10)
C80.0457 (14)0.0459 (14)0.0331 (12)0.0293 (12)0.0242 (11)0.0245 (11)
C90.0468 (14)0.0406 (13)0.0506 (15)0.0276 (12)0.0320 (12)0.0318 (12)
C100.0363 (13)0.0315 (12)0.0479 (14)0.0167 (10)0.0225 (11)0.0218 (11)
C110.0311 (11)0.0292 (11)0.0360 (12)0.0140 (9)0.0151 (10)0.0167 (10)
C120.0426 (14)0.0407 (14)0.0253 (11)0.0138 (11)0.0137 (10)0.0110 (10)
C130.0325 (12)0.0355 (13)0.0378 (13)0.0052 (10)0.0080 (10)0.0155 (11)
C140.0309 (11)0.0297 (11)0.0231 (10)0.0138 (9)0.0082 (9)0.0157 (9)
C150.0302 (11)0.0301 (11)0.0263 (11)0.0138 (9)0.0061 (9)0.0161 (9)
C160.0376 (12)0.0325 (12)0.0240 (11)0.0136 (10)0.0054 (9)0.0123 (9)
C170.0501 (15)0.0439 (14)0.0282 (12)0.0229 (12)0.0172 (11)0.0212 (11)
C180.0381 (13)0.0447 (14)0.0363 (13)0.0128 (11)0.0159 (11)0.0252 (11)
C190.0339 (12)0.0322 (12)0.0286 (11)0.0109 (10)0.0089 (9)0.0176 (10)
C200.0280 (11)0.0351 (12)0.0275 (11)0.0069 (9)0.0027 (9)0.0145 (10)
C210.0423 (14)0.0344 (13)0.0362 (13)0.0034 (11)0.0092 (11)0.0195 (11)
C220.0265 (11)0.0371 (13)0.0319 (12)0.0096 (10)0.0087 (9)0.0153 (10)
C230.0308 (12)0.0367 (13)0.0516 (15)0.0130 (10)0.0101 (11)0.0186 (12)
C240.0487 (17)0.0466 (17)0.0540 (18)0.0241 (14)0.0106 (14)0.0031 (14)
C260.0375 (13)0.0300 (12)0.0345 (12)0.0066 (10)0.0164 (10)0.0145 (10)
C270.0266 (10)0.0244 (10)0.0264 (10)0.0105 (8)0.0076 (8)0.0135 (9)
C280.0285 (11)0.0209 (10)0.0261 (10)0.0071 (8)0.0055 (9)0.0096 (8)
C290.0268 (10)0.0216 (10)0.0234 (10)0.0102 (8)0.0033 (8)0.0082 (8)
C300.0374 (12)0.0256 (11)0.0234 (11)0.0075 (9)0.0043 (9)0.0052 (9)
C310.0288 (11)0.0211 (10)0.0217 (10)0.0070 (8)0.0087 (8)0.0090 (8)
C320.0285 (11)0.0266 (11)0.0288 (11)0.0107 (9)0.0113 (9)0.0144 (9)
C330.0391 (13)0.0253 (11)0.0351 (12)0.0148 (10)0.0156 (10)0.0123 (10)
C340.0475 (14)0.0258 (11)0.0275 (11)0.0116 (10)0.0139 (10)0.0069 (9)
C350.0444 (14)0.0314 (12)0.0213 (10)0.0113 (10)0.0068 (10)0.0099 (9)
C360.0344 (12)0.0276 (11)0.0248 (11)0.0095 (9)0.0093 (9)0.0130 (9)
C370.0479 (14)0.0386 (13)0.0279 (11)0.0204 (11)0.0122 (10)0.0206 (10)
C380.0343 (12)0.0359 (12)0.0313 (12)0.0188 (10)0.0121 (10)0.0171 (10)
C390.0294 (11)0.0242 (10)0.0167 (9)0.0093 (8)0.0034 (8)0.0070 (8)
C400.0348 (12)0.0293 (11)0.0197 (10)0.0132 (9)0.0075 (9)0.0082 (9)
C410.0427 (13)0.0381 (13)0.0241 (11)0.0167 (11)0.0137 (10)0.0125 (10)
C420.0478 (14)0.0368 (13)0.0201 (10)0.0124 (11)0.0088 (10)0.0136 (10)
C430.0434 (13)0.0299 (12)0.0231 (10)0.0149 (10)0.0030 (9)0.0116 (9)
C440.0310 (11)0.0273 (11)0.0186 (10)0.0099 (9)0.0019 (8)0.0076 (8)
C450.0345 (12)0.0331 (12)0.0280 (11)0.0169 (10)0.0045 (9)0.0134 (9)
C460.0459 (14)0.0387 (13)0.0337 (12)0.0256 (11)0.0189 (11)0.0180 (11)
C470.0323 (13)0.0599 (17)0.0544 (16)0.0260 (12)0.0191 (12)0.0397 (14)
C480.0327 (13)0.0541 (16)0.0454 (14)0.0173 (11)0.0170 (11)0.0290 (13)
C490.0335 (12)0.0381 (13)0.0327 (12)0.0126 (10)0.0150 (10)0.0175 (10)
C500.0373 (12)0.0316 (12)0.0313 (11)0.0142 (10)0.0167 (10)0.0189 (10)
Geometric parameters (Å, º) top
O1—C25a1.473 (3)C22—H22a0.99
O1—C221.478 (2)C22—H22b0.99
O1—C25b1.508 (4)C23—C241.508 (4)
O1—Zr12.2694 (16)C23—H23a0.99
O2—C501.470 (3)C23—H23b0.99
O2—C471.487 (3)C24—C25b1.471 (4)
O2—Zr22.2517 (15)C24—C25a1.479 (4)
Zr1—N12.1759 (18)C24—H24a0.99
Zr1—N22.2182 (17)C24—H24b0.99
Zr1—Cl42.4316 (6)C24—H24c0.99
Zr1—Cl52.4453 (5)C24—H24d0.99
Zr1—Cl62.4551 (5)C25a—H25a0.99
Zr2—N42.1766 (17)C25a—H25b0.99
Zr2—N32.2262 (17)C25b—H25c0.99
Zr2—Cl12.4227 (6)C25b—H25d0.99
Zr2—Cl32.4336 (5)C26—C271.506 (3)
Zr2—Cl22.4395 (5)C26—H26a0.98
N1—C21.345 (3)C26—H26b0.98
N1—C61.458 (3)C26—H26c0.98
N2—C41.338 (3)C27—C281.400 (3)
N2—C141.459 (3)C28—C291.402 (3)
N3—C291.337 (3)C28—H28a0.95
N3—C391.451 (3)C29—C301.510 (3)
N4—C271.344 (3)C30—H30a0.98
N4—C311.455 (3)C30—H30b0.98
C1—C21.512 (3)C30—H30c0.98
C1—H1a0.98C31—C361.401 (3)
C1—H1b0.98C31—C321.401 (3)
C1—H1c0.98C32—C331.396 (3)
C2—C31.387 (3)C32—C381.507 (3)
C3—C41.409 (3)C33—C341.385 (4)
C3—H3a0.95C33—H33a0.95
C4—C51.504 (3)C34—C351.382 (4)
C5—H5a0.98C34—H34a0.95
C5—H5b0.98C35—C361.399 (3)
C5—H5c0.98C35—H35a0.95
C6—C111.403 (3)C36—C371.505 (3)
C6—C71.403 (3)C37—H37a0.98
C7—C81.395 (3)C37—H37b0.98
C7—C121.503 (3)C37—H37c0.98
C8—C91.380 (4)C38—H38a0.98
C8—H8a0.95C38—H38b0.98
C9—C101.379 (4)C38—H38c0.98
C9—H9a0.95C39—C401.401 (3)
C10—C111.392 (3)C39—C441.405 (3)
C10—H10a0.95C40—C411.396 (3)
C11—C131.508 (3)C40—C461.507 (3)
C12—H12a0.98C41—C421.380 (4)
C12—H12b0.98C41—H41a0.95
C12—H12c0.98C42—C431.383 (4)
C13—H13a0.98C42—H42a0.95
C13—H13b0.98C43—C441.395 (3)
C13—H13c0.98C43—H43a0.95
C14—C191.400 (3)C44—C451.502 (3)
C14—C151.403 (3)C45—H45a0.98
C15—C161.398 (3)C45—H45b0.98
C15—C201.503 (3)C45—H45c0.98
C16—C171.378 (4)C46—H46a0.98
C16—H16a0.95C46—H46b0.98
C17—C181.383 (4)C46—H46c0.98
C17—H17a0.95C47—C481.514 (3)
C18—C191.403 (3)C47—H47a0.99
C18—H18a0.95C47—H47b0.99
C19—C211.507 (3)C48—C491.524 (4)
C20—H20a0.98C48—H48a0.99
C20—H20b0.98C48—H48b0.99
C20—H20c0.98C49—C501.508 (3)
C21—H21a0.98C49—H49a0.99
C21—H21b0.98C49—H49b0.99
C21—H21c0.98C50—H50a0.99
C22—C231.490 (3)C50—H50b0.99
C25A—O1—C22100.8 (2)C22—C23—H23A110.9
C22—O1—C25B110.0 (2)C24—C23—H23A110.9
C25A—O1—ZR1135.7 (2)C22—C23—H23B110.9
C22—O1—ZR1122.05 (12)C24—C23—H23B110.9
C25B—O1—ZR1119.1 (3)H23A—C23—H23B108.9
C50—O2—C47108.24 (17)C25B—C24—C23108.9 (3)
C50—O2—ZR2126.32 (13)C25A—C24—C23105.4 (2)
C47—O2—ZR2122.94 (13)C25B—C24—H24A126.4
N1—ZR1—N283.11 (7)C25A—C24—H24A110.7
N1—ZR1—O1174.03 (7)C23—C24—H24A110.7
N2—ZR1—O191.54 (6)C25B—C24—H24B89
N1—ZR1—CL497.72 (5)C25A—C24—H24B110.7
N2—ZR1—CL492.34 (5)C23—C24—H24B110.7
O1—ZR1—CL485.10 (5)H24A—C24—H24B108.8
N1—ZR1—CL598.86 (5)C25A—C24—H24C91.2
N2—ZR1—CL5176.67 (5)C23—C24—H24C109.9
O1—ZR1—CL586.36 (4)C25B—C24—H24D109.9
CL4—ZR1—CL590.06 (2)C25A—C24—H24D129.9
N1—ZR1—CL691.09 (5)C23—C24—H24D109.9
N2—ZR1—CL686.50 (5)H24A—C24—H24D88.8
O1—ZR1—CL685.93 (5)H24C—C24—H24D108.3
CL4—ZR1—CL6170.91 (2)O1—C25A—C24105.0 (2)
CL5—ZR1—CL690.77 (2)O1—C25A—H25A110.7
N4—ZR2—N382.65 (6)C24—C25A—H25A110.7
N4—ZR2—O2173.55 (6)O1—C25A—H25B110.7
N3—ZR2—O294.92 (6)C24—C25A—H25B110.7
N4—ZR2—CL196.00 (5)H25A—C25A—H25B108.8
N3—ZR2—CL1177.03 (5)C24—C25B—O1103.6 (3)
O2—ZR2—CL186.69 (5)C24—C25B—H25C111
N4—ZR2—CL3100.57 (5)O1—C25B—H25C111
N3—ZR2—CL389.58 (5)C24—C25B—H25D111
O2—ZR2—CL385.35 (4)O1—C25B—H25D111
CL1—ZR2—CL388.06 (2)H25C—C25B—H25D109
N4—ZR2—CL289.39 (5)C27—C26—H26A109.5
N3—ZR2—CL288.26 (5)C27—C26—H26B109.5
O2—ZR2—CL284.55 (4)H26A—C26—H26B109.5
CL1—ZR2—CL294.37 (2)C27—C26—H26C109.5
CL3—ZR2—CL2169.458 (19)H26A—C26—H26C109.5
C2—N1—C6115.53 (18)H26B—C26—H26C109.5
C2—N1—ZR1124.55 (15)N4—C27—C28123.38 (19)
C6—N1—ZR1119.68 (13)N4—C27—C26119.86 (19)
C4—N2—C14116.36 (17)C28—C27—C26116.70 (19)
C4—N2—ZR1122.39 (14)C27—C28—C29128.5 (2)
C14—N2—ZR1120.82 (13)C27—C28—H28A115.8
C29—N3—C39118.24 (17)C29—C28—H28A115.8
C29—N3—ZR2123.43 (14)N3—C29—C28123.48 (19)
C39—N3—ZR2118.04 (13)N3—C29—C30119.20 (19)
C27—N4—C31117.46 (17)C28—C29—C30117.23 (19)
C27—N4—ZR2124.81 (14)C29—C30—H30A109.5
C31—N4—ZR2117.39 (13)C29—C30—H30B109.5
C2—C1—H1A109.5H30A—C30—H30B109.5
C2—C1—H1B109.5C29—C30—H30C109.5
H1A—C1—H1B109.5H30A—C30—H30C109.5
C2—C1—H1C109.5H30B—C30—H30C109.5
H1A—C1—H1C109.5C36—C31—C32121.5 (2)
H1B—C1—H1C109.5C36—C31—N4120.4 (2)
N1—C2—C3123.5 (2)C32—C31—N4118.11 (19)
N1—C2—C1119.8 (2)C33—C32—C31118.3 (2)
C3—C2—C1116.7 (2)C33—C32—C38120.0 (2)
C2—C3—C4128.5 (2)C31—C32—C38121.7 (2)
C2—C3—H3A115.7C34—C33—C32120.9 (2)
C4—C3—H3A115.7C34—C33—H33A119.5
N2—C4—C3123.6 (2)C32—C33—H33A119.5
N2—C4—C5119.8 (2)C35—C34—C33119.8 (2)
C3—C4—C5116.5 (2)C35—C34—H34A120.1
C4—C5—H5A109.5C33—C34—H34A120.1
C4—C5—H5B109.5C34—C35—C36121.3 (2)
H5A—C5—H5B109.5C34—C35—H35A119.4
C4—C5—H5C109.5C36—C35—H35A119.4
H5A—C5—H5C109.5C35—C36—C31117.9 (2)
H5B—C5—H5C109.5C35—C36—C37119.3 (2)
C11—C6—C7121.5 (2)C31—C36—C37122.8 (2)
C11—C6—N1119.0 (2)C36—C37—H37A109.5
C7—C6—N1119.4 (2)C36—C37—H37B109.5
C8—C7—C6117.4 (2)H37A—C37—H37B109.5
C8—C7—C12119.6 (2)C36—C37—H37C109.5
C6—C7—C12123.0 (2)H37A—C37—H37C109.5
C9—C8—C7122.1 (2)H37B—C37—H37C109.5
C9—C8—H8A119C32—C38—H38A109.5
C7—C8—H8A119C32—C38—H38B109.5
C10—C9—C8119.4 (2)H38A—C38—H38B109.5
C10—C9—H9A120.3C32—C38—H38C109.5
C8—C9—H9A120.3H38A—C38—H38C109.5
C9—C10—C11121.3 (2)H38B—C38—H38C109.5
C9—C10—H10A119.4C40—C39—C44121.2 (2)
C11—C10—H10A119.4C40—C39—N3120.88 (19)
C10—C11—C6118.4 (2)C44—C39—N3117.81 (19)
C10—C11—C13120.1 (2)C41—C40—C39118.2 (2)
C6—C11—C13121.5 (2)C41—C40—C46119.1 (2)
C7—C12—H12A109.5C39—C40—C46122.7 (2)
C7—C12—H12B109.5C42—C41—C40121.0 (2)
H12A—C12—H12B109.5C42—C41—H41A119.5
C7—C12—H12C109.5C40—C41—H41A119.5
H12A—C12—H12C109.5C41—C42—C43120.0 (2)
H12B—C12—H12C109.5C41—C42—H42A120
C11—C13—H13A109.5C43—C42—H42A120
C11—C13—H13B109.5C42—C43—C44121.0 (2)
H13A—C13—H13B109.5C42—C43—H43A119.5
C11—C13—H13C109.5C44—C43—H43A119.5
H13A—C13—H13C109.5C43—C44—C39118.2 (2)
H13B—C13—H13C109.5C43—C44—C45120.1 (2)
C19—C14—C15121.7 (2)C39—C44—C45121.7 (2)
C19—C14—N2120.79 (19)C44—C45—H45A109.5
C15—C14—N2117.50 (19)C44—C45—H45B109.5
C16—C15—C14118.2 (2)H45A—C45—H45B109.5
C16—C15—C20119.9 (2)C44—C45—H45C109.5
C14—C15—C20121.9 (2)H45A—C45—H45C109.5
C17—C16—C15121.0 (2)H45B—C45—H45C109.5
C17—C16—H16A119.5C40—C46—H46A109.5
C15—C16—H16A119.5C40—C46—H46B109.5
C16—C17—C18120.1 (2)H46A—C46—H46B109.5
C16—C17—H17A119.9C40—C46—H46C109.5
C18—C17—H17A119.9H46A—C46—H46C109.5
C17—C18—C19121.1 (2)H46B—C46—H46C109.5
C17—C18—H18A119.4O2—C47—C48105.6 (2)
C19—C18—H18A119.4O2—C47—H47A110.6
C14—C19—C18117.8 (2)C48—C47—H47A110.6
C14—C19—C21123.6 (2)O2—C47—H47B110.6
C18—C19—C21118.6 (2)C48—C47—H47B110.6
C15—C20—H20A109.5H47A—C47—H47B108.7
C15—C20—H20B109.5C47—C48—C49104.0 (2)
H20A—C20—H20B109.5C47—C48—H48A111
C15—C20—H20C109.5C49—C48—H48A111
H20A—C20—H20C109.5C47—C48—H48B111
H20B—C20—H20C109.5C49—C48—H48B111
C19—C21—H21A109.5H48A—C48—H48B109
C19—C21—H21B109.5C50—C49—C48102.18 (19)
H21A—C21—H21B109.5C50—C49—H49A111.3
C19—C21—H21C109.5C48—C49—H49A111.3
H21A—C21—H21C109.5C50—C49—H49B111.3
H21B—C21—H21C109.5C48—C49—H49B111.3
O1—C22—C23103.91 (18)H49A—C49—H49B109.2
O1—C22—H22A111O2—C50—C49103.61 (18)
C23—C22—H22A111O2—C50—H50A111
O1—C22—H22B111C49—C50—H50A111
C23—C22—H22B111O2—C50—H50B111
H22A—C22—H22B109C49—C50—H50B111
C22—C23—C24104.3 (2)H50A—C50—H50B109
C25A—O1—ZR1—N265.5 (3)C19—C14—C15—C165.1 (3)
C22—O1—ZR1—N2131.26 (17)N2—C14—C15—C16177.44 (19)
C25B—O1—ZR1—N284.5 (4)C19—C14—C15—C20172.0 (2)
C25A—O1—ZR1—CL426.7 (3)N2—C14—C15—C205.5 (3)
C22—O1—ZR1—CL4136.52 (16)C14—C15—C16—C172.1 (3)
C25B—O1—ZR1—CL47.7 (4)C20—C15—C16—C17175.0 (2)
C25A—O1—ZR1—CL5117.0 (3)C15—C16—C17—C181.2 (4)
C22—O1—ZR1—CL546.14 (16)C16—C17—C18—C191.7 (4)
C25B—O1—ZR1—CL598.1 (4)C15—C14—C19—C184.6 (3)
C25A—O1—ZR1—CL6151.9 (3)N2—C14—C19—C18178.0 (2)
C22—O1—ZR1—CL644.89 (16)C15—C14—C19—C21173.5 (2)
C25B—O1—ZR1—CL6170.9 (4)N2—C14—C19—C213.9 (4)
C50—O2—ZR2—N380.13 (17)C17—C18—C19—C141.2 (4)
C47—O2—ZR2—N3119.98 (18)C17—C18—C19—C21177.0 (2)
C50—O2—ZR2—CL197.37 (16)C25A—O1—C22—C2344.4 (3)
C47—O2—ZR2—CL162.52 (18)C25B—O1—C22—C2323.3 (5)
C50—O2—ZR2—CL39.05 (16)ZR1—O1—C22—C23123.79 (18)
C47—O2—ZR2—CL3150.84 (18)O1—C22—C23—C2430.0 (3)
C50—O2—ZR2—CL2167.91 (17)C22—C23—C24—C25B27.4 (6)
C47—O2—ZR2—CL232.20 (17)C22—C23—C24—C25A4.0 (4)
N2—ZR1—N1—C233.21 (18)C22—O1—C25A—C2441.9 (4)
CL4—ZR1—N1—C2124.64 (17)C25B—O1—C25A—C2475.2 (5)
CL5—ZR1—N1—C2144.08 (17)ZR1—O1—C25A—C24123.6 (3)
CL6—ZR1—N1—C253.14 (17)C25B—C24—C25A—O178.5 (5)
N2—ZR1—N1—C6152.64 (16)C23—C24—C25A—O123.6 (5)
CL4—ZR1—N1—C661.20 (16)C25A—C24—C25B—O172.0 (5)
CL5—ZR1—N1—C630.07 (16)C23—C24—C25B—O112.9 (7)
CL6—ZR1—N1—C6121.02 (15)C25A—O1—C25B—C2475.1 (5)
N1—ZR1—N2—C435.98 (17)C22—O1—C25B—C246.5 (7)
O1—ZR1—N2—C4141.36 (17)ZR1—O1—C25B—C24141.6 (4)
CL4—ZR1—N2—C4133.48 (17)C31—N4—C27—C28168.1 (2)
CL6—ZR1—N2—C455.54 (17)ZR2—N4—C27—C2818.8 (3)
N1—ZR1—N2—C14151.80 (16)C31—N4—C27—C269.0 (3)
O1—ZR1—N2—C1430.85 (16)ZR2—N4—C27—C26164.13 (16)
CL4—ZR1—N2—C1454.30 (15)N4—C27—C28—C2914.0 (4)
CL6—ZR1—N2—C14116.67 (15)C26—C27—C28—C29163.1 (2)
N4—ZR2—N3—C2934.50 (16)C39—N3—C29—C28166.3 (2)
O2—ZR2—N3—C29139.49 (16)ZR2—N3—C29—C2820.0 (3)
CL3—ZR2—N3—C29135.21 (16)C39—N3—C29—C3010.2 (3)
CL2—ZR2—N3—C2955.11 (16)ZR2—N3—C29—C30163.49 (16)
N4—ZR2—N3—C39151.81 (15)C27—C28—C29—N312.9 (4)
O2—ZR2—N3—C3934.21 (15)C27—C28—C29—C30163.7 (2)
CL3—ZR2—N3—C3951.09 (14)C27—N4—C31—C3692.5 (2)
CL2—ZR2—N3—C39118.59 (14)ZR2—N4—C31—C3681.2 (2)
N3—ZR2—N4—C2734.00 (17)C27—N4—C31—C3289.7 (2)
CL1—ZR2—N4—C27148.66 (16)ZR2—N4—C31—C3296.7 (2)
CL3—ZR2—N4—C27122.20 (16)C36—C31—C32—C333.9 (3)
CL2—ZR2—N4—C2754.32 (17)N4—C31—C32—C33173.97 (19)
N3—ZR2—N4—C31152.88 (15)C36—C31—C32—C38175.3 (2)
CL1—ZR2—N4—C3124.46 (15)N4—C31—C32—C386.9 (3)
CL3—ZR2—N4—C3164.68 (15)C31—C32—C33—C340.6 (3)
CL2—ZR2—N4—C31118.80 (14)C38—C32—C33—C34178.5 (2)
C6—N1—C2—C3169.4 (2)C32—C33—C34—C352.0 (4)
ZR1—N1—C2—C316.2 (3)C33—C34—C35—C361.6 (4)
C6—N1—C2—C18.0 (3)C34—C35—C36—C311.6 (4)
ZR1—N1—C2—C1166.40 (17)C34—C35—C36—C37177.6 (2)
N1—C2—C3—C415.9 (4)C32—C31—C36—C354.3 (3)
C1—C2—C3—C4161.6 (2)N4—C31—C36—C35173.5 (2)
C14—N2—C4—C3164.9 (2)C32—C31—C36—C37174.8 (2)
ZR1—N2—C4—C322.6 (3)N4—C31—C36—C377.4 (3)
C14—N2—C4—C511.5 (3)C29—N3—C39—C4094.8 (2)
ZR1—N2—C4—C5161.0 (2)ZR2—N3—C39—C4079.2 (2)
C2—C3—C4—N211.8 (4)C29—N3—C39—C4488.2 (2)
C2—C3—C4—C5164.7 (3)ZR2—N3—C39—C4497.80 (19)
C2—N1—C6—C1185.2 (2)C44—C39—C40—C416.1 (3)
ZR1—N1—C6—C11100.1 (2)N3—C39—C40—C41170.8 (2)
C2—N1—C6—C791.3 (3)C44—C39—C40—C46171.2 (2)
ZR1—N1—C6—C783.4 (2)N3—C39—C40—C4611.9 (3)
C11—C6—C7—C82.6 (3)C39—C40—C41—C421.2 (3)
N1—C6—C7—C8178.96 (19)C46—C40—C41—C42176.2 (2)
C11—C6—C7—C12174.8 (2)C40—C41—C42—C433.5 (4)
N1—C6—C7—C121.5 (3)C41—C42—C43—C443.4 (4)
C6—C7—C8—C92.4 (3)C42—C43—C44—C391.3 (3)
C12—C7—C8—C9175.1 (2)C42—C43—C44—C45177.3 (2)
C7—C8—C9—C100.9 (4)C40—C39—C44—C436.2 (3)
C8—C9—C10—C110.6 (4)N3—C39—C44—C43170.87 (19)
C9—C10—C11—C60.5 (3)C40—C39—C44—C45172.5 (2)
C9—C10—C11—C13179.9 (2)N3—C39—C44—C4510.5 (3)
C7—C6—C11—C101.2 (3)C50—O2—C47—C484.6 (3)
N1—C6—C11—C10177.57 (19)ZR2—O2—C47—C48167.62 (16)
C7—C6—C11—C13178.5 (2)O2—C47—C48—C4920.3 (3)
N1—C6—C11—C132.1 (3)C47—C48—C49—C5036.9 (3)
C4—N2—C14—C1989.4 (3)C47—O2—C50—C4927.9 (2)
ZR1—N2—C14—C1983.3 (2)ZR2—O2—C50—C49169.80 (14)
C4—N2—C14—C1588.1 (2)C48—C49—C50—O239.7 (2)
ZR1—N2—C14—C1599.2 (2)

Experimental details

Crystal data
Chemical formula[Zr(C21H25N2)Cl3(C4H8O)]
Mr575.10
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)13.6082 (5), 14.5970 (5), 16.3293 (6)
α, β, γ (°)114.948 (2), 98.898 (2), 107.951 (2)
V3)2641.04 (16)
Z4
Radiation typeCu Kα
µ (mm1)6.35
Crystal size (mm)0.16 × 0.16 × 0.07
Data collection
DiffractometerBruker Smart 6000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.50, 0.64
No. of measured, independent and
observed [I > 2σ(I)] reflections
36248, 9929, 9305
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 0.99
No. of reflections9929
No. of parameters589
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 1.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), UdMX (Marris, 2004).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds