Download citation
Download citation
link to html
In the title compound, [Fe2(C5H5)2(C6H4F)2], the two fluoro and ferrocenyl groups are oriented in a trans arrangement as a result of crystallographic inversion symmetry. The C-F and C-C distances of the ethene framework are 1.365 (3) and 1.331 (5) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048842/om2164sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048842/om2164Isup2.hkl
Contains datablock I

CCDC reference: 667143

Key indicators

  • Single-crystal X-ray study
  • T = 103 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.035
  • wR factor = 0.067
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.82
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Although a number of synthetic works on ferrocenyl substituted ethenes have been reported, only three reports are known for the crystalline structures of trans-1,2-diferrocenylethene derivatives, that is, trans-1,2-diferrocenylethene (Denifl et al., 1996), trans-1,2-diferrocenyl-1,2-dimethylethene (Chen et al., 2000), and trans-1,2-diferrocenyl-1,2-diphenylethene (Skibar et al., 2004). During our course of studies on the syntheses of new π-conjugated compounds bearing ferrocenyl groups (Nagahora et al., 2004), the crystal structure of trans-1,2-diferrocenyl-1,2-difluoroethene has been revealed.

The title compound was synthesized in 6% yield by the treatment of ferrocenyllithium, which was prepared by the reaction of ferrocene with tert-butyllithium, with 1,2-dibromo-1,1,2,2-tetrafluoroethane. The molecular structure of the title compound is shown in Fig. 1. It was found that two fluoro and ferrocenyl groups are located as trans configuration, respectively, with respect to the ethene framework. It has a center of symmetry in the middle of the C1—C1i bond. The C1—C1i and C1—C2 bond lengths (1.331 (5) and 1.448 (2) Å) of the title compound are in the range of those for the previously reported trans-Fc(R)C=C(R)Fc (Fc = ferrocenyl) (1.17 (1) and 1.47 (6) Å for R = H, 1.354 (4) and 1.517 (3) Å for R = Me, 1.29 (4) and 1.51 Å for R = Ph). The F1—C1 distance (1.365 (3) Å) is similar to that of trans-F(H)C=C(H)F (1.1349 (1) Å) (Lentz et al., 2004). The dihedral angle between the least squares of C2—C3—C4—C5—C6 and C2i—C3i—C4i—C5i—C6i (the cyclopentadienyl rings) is 18.6°, which is similar to that of the reported trans-Fc(H)C=C(H)Fc (15.1°). The shortest intermolecular contacts were found to be F1—H1iii (2.4885 (15) Å) and F1—F1ii (2.704 (2) Å), which are shorter than the sum of van der Waals radii between fluoro and hydrogen atoms (2.67 Å) and two fluoro atoms (2.94 Å), respectively (Fig. 2).

Related literature top

For related literature, see: Chen et al. (2000); Denifl et al. (1996); Lentz et al. (2004); Nagahora et al. (2004); Skibar et al. (2004).

Experimental top

A solution of tert-butyllithium in n-pentane (1.59 M; 17.3 ml, 27.5 mmol) was added to a THF (25 ml)/n-hexane (25 ml) solution of ferrocene (4.63 mg, 25.0 mmol) at 273 K. After stirring at the same temperature for 3 h, 1,2-dibromo-1,1,2,2-tetrafluoroethane (4.41 ml, 37.5 mmol) was added to the reaction mixture. After stirring at the same temperature for 1 h, the solution was allowed to be warmed up to room temperature for 12 h. After the removal of solvents, n-hexane was added to the residue and the mixture was filtered through Celite. The filtrate was purified by silica-gel column chromatography (eluting with n-hexane and chloroform) to afford the title compound (350 mg, 0.810 mmol, 5.9% based on the ferrocene) as an orange solid [m.p. 473 K (decomposition)]. Single crystals suitable for X-ray crystallographic analysis were obtained by slow recrystallization of its chloroform solution at room temperature.

Refinement top

All H atoms were treated as riding with C—H distances of 0.95 Å, while all the other atoms were refined anisotropically.

Structure description top

Although a number of synthetic works on ferrocenyl substituted ethenes have been reported, only three reports are known for the crystalline structures of trans-1,2-diferrocenylethene derivatives, that is, trans-1,2-diferrocenylethene (Denifl et al., 1996), trans-1,2-diferrocenyl-1,2-dimethylethene (Chen et al., 2000), and trans-1,2-diferrocenyl-1,2-diphenylethene (Skibar et al., 2004). During our course of studies on the syntheses of new π-conjugated compounds bearing ferrocenyl groups (Nagahora et al., 2004), the crystal structure of trans-1,2-diferrocenyl-1,2-difluoroethene has been revealed.

The title compound was synthesized in 6% yield by the treatment of ferrocenyllithium, which was prepared by the reaction of ferrocene with tert-butyllithium, with 1,2-dibromo-1,1,2,2-tetrafluoroethane. The molecular structure of the title compound is shown in Fig. 1. It was found that two fluoro and ferrocenyl groups are located as trans configuration, respectively, with respect to the ethene framework. It has a center of symmetry in the middle of the C1—C1i bond. The C1—C1i and C1—C2 bond lengths (1.331 (5) and 1.448 (2) Å) of the title compound are in the range of those for the previously reported trans-Fc(R)C=C(R)Fc (Fc = ferrocenyl) (1.17 (1) and 1.47 (6) Å for R = H, 1.354 (4) and 1.517 (3) Å for R = Me, 1.29 (4) and 1.51 Å for R = Ph). The F1—C1 distance (1.365 (3) Å) is similar to that of trans-F(H)C=C(H)F (1.1349 (1) Å) (Lentz et al., 2004). The dihedral angle between the least squares of C2—C3—C4—C5—C6 and C2i—C3i—C4i—C5i—C6i (the cyclopentadienyl rings) is 18.6°, which is similar to that of the reported trans-Fc(H)C=C(H)Fc (15.1°). The shortest intermolecular contacts were found to be F1—H1iii (2.4885 (15) Å) and F1—F1ii (2.704 (2) Å), which are shorter than the sum of van der Waals radii between fluoro and hydrogen atoms (2.67 Å) and two fluoro atoms (2.94 Å), respectively (Fig. 2).

For related literature, see: Chen et al. (2000); Denifl et al. (1996); Lentz et al. (2004); Nagahora et al. (2004); Skibar et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: yadokari-XG (Wakita, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (i) -x, 1 - y, -z.].
[Figure 2] Fig. 2. The molecular packing of the title compound. Black dashed and gray solid lines indicate the F···Fii and F···Hiii intramolecular contacts, respectively [Symmetry codes: (ii) -x, 1 - y, -1 - z; (iii) x, y, -1 + z.].
trans-1,2-Diferrocenyl-1,2-difluoroethene top
Crystal data top
[Fe2(C5H5)2(C6H4F)2]Dx = 1.699 Mg m3
Mr = 432.06Mo Kα radiation, λ = 0.71070 Å
Tetragonal, P42/nCell parameters from 1483 reflections
Hall symbol: -P 4bcθ = 3.4–25.0°
a = 16.968 (6) ŵ = 1.74 mm1
c = 5.8668 (17) ÅT = 103 K
V = 1689.2 (9) Å3Needle, orange
Z = 40.30 × 0.10 × 0.10 mm
F(000) = 880
Data collection top
Rigaku Mercury CCD
diffractometer
1483 independent reflections
Radiation source: fine-focus sealed tube1361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 2020
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2019
Tmin = 0.623, Tmax = 0.845l = 66
10691 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0205P)2 + 1.7668P]
where P = (Fo2 + 2Fc2)/3
1483 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe2(C5H5)2(C6H4F)2]Z = 4
Mr = 432.06Mo Kα radiation
Tetragonal, P42/nµ = 1.74 mm1
a = 16.968 (6) ÅT = 103 K
c = 5.8668 (17) Å0.30 × 0.10 × 0.10 mm
V = 1689.2 (9) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
1483 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1361 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.845Rint = 0.040
10691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.22Δρmax = 0.25 e Å3
1483 reflectionsΔρmin = 0.25 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00676 (2)0.71464 (2)0.01662 (6)0.01341 (13)
F10.01687 (9)0.52552 (9)0.2872 (2)0.0201 (4)
C10.01534 (15)0.53068 (15)0.0550 (4)0.0149 (5)
C20.05082 (15)0.60226 (15)0.0318 (4)0.0149 (6)
C30.04486 (16)0.63610 (15)0.2559 (5)0.0165 (6)
H10.01450.61590.37880.020*
C40.09205 (16)0.70469 (15)0.2614 (5)0.0192 (6)
H20.09920.73830.38910.023*
C50.12706 (15)0.71477 (15)0.0434 (5)0.0186 (6)
H30.16170.75620.00060.022*
C60.10137 (15)0.65216 (15)0.0999 (5)0.0172 (6)
H40.11530.64480.25530.021*
C70.10232 (17)0.71039 (17)0.1308 (6)0.0285 (7)
H50.12830.66430.18360.034*
C80.10795 (16)0.74232 (16)0.0892 (5)0.0245 (7)
H60.13830.72150.21110.029*
C90.06075 (16)0.81070 (16)0.0981 (5)0.0223 (6)
H70.05400.84400.22680.027*
C100.02530 (16)0.82111 (16)0.1169 (5)0.0230 (7)
H80.00960.86240.15860.028*
C110.05117 (18)0.75871 (18)0.2605 (5)0.0271 (7)
H90.03670.75090.41530.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0127 (2)0.0098 (2)0.0177 (2)0.00023 (15)0.00097 (16)0.00126 (15)
F10.0289 (9)0.0176 (8)0.0136 (8)0.0035 (7)0.0007 (7)0.0001 (6)
C10.0166 (13)0.0157 (13)0.0125 (14)0.0038 (10)0.0015 (11)0.0008 (10)
C20.0145 (13)0.0111 (12)0.0191 (15)0.0038 (10)0.0028 (11)0.0015 (11)
C30.0210 (14)0.0133 (13)0.0152 (14)0.0036 (11)0.0022 (11)0.0017 (11)
C40.0219 (15)0.0151 (14)0.0204 (15)0.0039 (11)0.0082 (12)0.0015 (11)
C50.0117 (13)0.0139 (13)0.0303 (17)0.0010 (11)0.0020 (11)0.0021 (12)
C60.0141 (13)0.0158 (14)0.0218 (15)0.0035 (11)0.0016 (11)0.0011 (12)
C70.0192 (15)0.0178 (15)0.048 (2)0.0014 (12)0.0167 (14)0.0025 (14)
C80.0149 (14)0.0209 (15)0.0378 (18)0.0041 (12)0.0040 (13)0.0062 (13)
C90.0217 (15)0.0146 (14)0.0307 (16)0.0075 (11)0.0019 (13)0.0024 (12)
C100.0186 (15)0.0137 (14)0.0368 (18)0.0038 (11)0.0012 (13)0.0111 (13)
C110.0284 (16)0.0330 (17)0.0198 (16)0.0163 (14)0.0064 (13)0.0023 (13)
Geometric parameters (Å, º) top
Fe1—C32.041 (3)C3—H10.9500
Fe1—C62.042 (3)C4—C51.420 (4)
Fe1—C112.042 (3)C4—H20.9500
Fe1—C102.043 (3)C5—C61.423 (4)
Fe1—C72.044 (3)C5—H30.9500
Fe1—C42.046 (3)C6—H40.9500
Fe1—C82.047 (3)C7—C81.403 (4)
Fe1—C52.047 (3)C7—C111.416 (4)
Fe1—C92.049 (3)C7—H50.9500
Fe1—C22.050 (3)C8—C91.411 (4)
F1—C11.365 (3)C8—H60.9500
C1—C1i1.331 (5)C9—C101.408 (4)
C1—C21.448 (4)C9—H70.9500
C2—C61.432 (4)C10—C111.422 (4)
C2—C31.439 (4)C10—H80.9500
C3—C41.413 (4)C11—H90.9500
C3—Fe1—C669.03 (11)C4—C3—C2108.0 (2)
C3—Fe1—C11159.96 (12)C4—C3—Fe169.95 (15)
C6—Fe1—C11107.59 (12)C2—C3—Fe169.76 (14)
C3—Fe1—C10157.77 (11)C4—C3—H1126.0
C6—Fe1—C10122.70 (11)C2—C3—H1126.0
C11—Fe1—C1040.76 (12)Fe1—C3—H1125.9
C3—Fe1—C7123.69 (12)C3—C4—C5108.4 (2)
C6—Fe1—C7123.51 (12)C3—C4—Fe169.59 (15)
C11—Fe1—C740.55 (12)C5—C4—Fe169.75 (15)
C10—Fe1—C768.15 (11)C3—C4—H2125.8
C3—Fe1—C440.46 (11)C5—C4—H2125.8
C6—Fe1—C468.65 (11)Fe1—C4—H2126.4
C11—Fe1—C4158.40 (12)C4—C5—C6108.3 (2)
C10—Fe1—C4122.05 (11)C4—C5—Fe169.63 (15)
C7—Fe1—C4159.15 (13)C6—C5—Fe169.42 (15)
C3—Fe1—C8107.93 (11)C4—C5—H3125.9
C6—Fe1—C8159.45 (11)C6—C5—H3125.9
C11—Fe1—C867.89 (12)Fe1—C5—H3126.7
C10—Fe1—C867.89 (11)C5—C6—C2107.8 (2)
C7—Fe1—C840.10 (13)C5—C6—Fe169.85 (15)
C4—Fe1—C8123.07 (12)C2—C6—Fe169.85 (14)
C3—Fe1—C568.41 (11)C5—C6—H4126.1
C6—Fe1—C540.73 (11)C2—C6—H4126.1
C11—Fe1—C5122.74 (12)Fe1—C6—H4125.8
C10—Fe1—C5107.10 (11)C8—C7—C11108.2 (3)
C7—Fe1—C5159.27 (13)C8—C7—Fe170.06 (17)
C4—Fe1—C540.61 (11)C11—C7—Fe169.62 (16)
C8—Fe1—C5158.73 (12)C8—C7—H5125.9
C3—Fe1—C9122.43 (11)C11—C7—H5125.9
C6—Fe1—C9158.57 (11)Fe1—C7—H5126.0
C11—Fe1—C967.98 (12)C7—C8—C9108.2 (3)
C10—Fe1—C940.27 (12)C7—C8—Fe169.84 (16)
C7—Fe1—C967.69 (12)C9—C8—Fe169.91 (16)
C4—Fe1—C9107.31 (11)C7—C8—H6125.9
C8—Fe1—C940.30 (11)C9—C8—H6125.9
C5—Fe1—C9122.60 (11)Fe1—C8—H6125.9
C3—Fe1—C241.17 (10)C10—C9—C8108.2 (3)
C6—Fe1—C240.96 (10)C10—C9—Fe169.64 (15)
C11—Fe1—C2123.42 (11)C8—C9—Fe169.79 (16)
C10—Fe1—C2159.43 (12)C10—C9—H7125.9
C7—Fe1—C2108.40 (11)C8—C9—H7125.9
C4—Fe1—C268.58 (10)Fe1—C9—H7126.2
C8—Fe1—C2123.44 (11)C9—C10—C11107.8 (3)
C5—Fe1—C268.53 (10)C9—C10—Fe170.09 (15)
C9—Fe1—C2159.04 (11)C11—C10—Fe169.57 (16)
C1i—C1—F1116.2 (3)C9—C10—H8126.1
C1i—C1—C2130.4 (3)C11—C10—H8126.1
F1—C1—C2113.4 (2)Fe1—C10—H8125.8
C6—C2—C3107.4 (2)C7—C11—C10107.6 (3)
C6—C2—C1123.7 (2)C7—C11—Fe169.83 (16)
C3—C2—C1128.8 (2)C10—C11—Fe169.67 (16)
C6—C2—Fe169.20 (14)C7—C11—H9126.2
C3—C2—Fe169.06 (14)C10—C11—H9126.2
C1—C2—Fe1127.83 (18)Fe1—C11—H9125.9
C1i—C1—C2—C6161.0 (3)C2—Fe1—C6—C5118.8 (2)
F1—C1—C2—C616.4 (4)C3—Fe1—C6—C237.98 (15)
C1i—C1—C2—C317.7 (6)C11—Fe1—C6—C2121.08 (17)
F1—C1—C2—C3164.9 (2)C10—Fe1—C6—C2163.28 (16)
C1i—C1—C2—Fe1110.3 (4)C7—Fe1—C6—C279.33 (19)
F1—C1—C2—Fe172.3 (3)C4—Fe1—C6—C281.50 (17)
C3—Fe1—C2—C6119.2 (2)C8—Fe1—C6—C247.3 (4)
C11—Fe1—C2—C678.00 (19)C5—Fe1—C6—C2118.8 (2)
C10—Fe1—C2—C643.6 (4)C9—Fe1—C6—C2164.5 (3)
C7—Fe1—C2—C6120.28 (18)C3—Fe1—C7—C877.46 (19)
C4—Fe1—C2—C681.68 (17)C6—Fe1—C7—C8163.19 (16)
C8—Fe1—C2—C6162.00 (17)C11—Fe1—C7—C8119.3 (2)
C5—Fe1—C2—C637.89 (16)C10—Fe1—C7—C881.18 (18)
C9—Fe1—C2—C6164.2 (3)C4—Fe1—C7—C842.4 (4)
C6—Fe1—C2—C3119.2 (2)C5—Fe1—C7—C8161.7 (3)
C11—Fe1—C2—C3162.78 (17)C9—Fe1—C7—C837.57 (16)
C10—Fe1—C2—C3162.8 (3)C2—Fe1—C7—C8120.43 (17)
C7—Fe1—C2—C3120.50 (17)C3—Fe1—C7—C11163.24 (16)
C4—Fe1—C2—C337.54 (16)C6—Fe1—C7—C1177.5 (2)
C8—Fe1—C2—C378.78 (19)C10—Fe1—C7—C1138.12 (17)
C5—Fe1—C2—C381.32 (17)C4—Fe1—C7—C11161.7 (3)
C9—Fe1—C2—C345.0 (4)C8—Fe1—C7—C11119.3 (2)
C3—Fe1—C2—C1123.6 (3)C5—Fe1—C7—C1142.4 (4)
C6—Fe1—C2—C1117.2 (3)C9—Fe1—C7—C1181.73 (18)
C11—Fe1—C2—C139.2 (3)C2—Fe1—C7—C11120.27 (17)
C10—Fe1—C2—C173.6 (4)C11—C7—C8—C90.2 (3)
C7—Fe1—C2—C13.1 (3)Fe1—C7—C8—C959.59 (19)
C4—Fe1—C2—C1161.1 (3)C11—C7—C8—Fe159.38 (19)
C8—Fe1—C2—C144.8 (3)C3—Fe1—C8—C7121.39 (17)
C5—Fe1—C2—C1155.1 (3)C6—Fe1—C8—C743.4 (4)
C9—Fe1—C2—C178.6 (4)C11—Fe1—C8—C737.73 (18)
C6—C2—C3—C40.9 (3)C10—Fe1—C8—C781.88 (19)
C1—C2—C3—C4177.9 (3)C4—Fe1—C8—C7163.35 (17)
Fe1—C2—C3—C459.72 (18)C5—Fe1—C8—C7162.2 (3)
C6—C2—C3—Fe158.77 (17)C9—Fe1—C8—C7119.3 (3)
C1—C2—C3—Fe1122.3 (3)C2—Fe1—C8—C778.6 (2)
C6—Fe1—C3—C481.28 (17)C3—Fe1—C8—C9119.33 (18)
C11—Fe1—C3—C4165.2 (3)C6—Fe1—C8—C9162.7 (3)
C10—Fe1—C3—C445.0 (4)C11—Fe1—C8—C981.56 (19)
C7—Fe1—C3—C4161.65 (17)C10—Fe1—C8—C937.41 (18)
C8—Fe1—C3—C4120.29 (17)C7—Fe1—C8—C9119.3 (3)
C5—Fe1—C3—C437.42 (16)C4—Fe1—C8—C977.4 (2)
C9—Fe1—C3—C478.37 (19)C5—Fe1—C8—C942.9 (4)
C2—Fe1—C3—C4119.1 (2)C2—Fe1—C8—C9162.07 (17)
C6—Fe1—C3—C237.78 (15)C7—C8—C9—C100.3 (3)
C11—Fe1—C3—C246.1 (4)Fe1—C8—C9—C1059.25 (19)
C10—Fe1—C3—C2164.1 (3)C7—C8—C9—Fe159.55 (19)
C7—Fe1—C3—C279.28 (19)C3—Fe1—C9—C10161.21 (16)
C4—Fe1—C3—C2119.1 (2)C6—Fe1—C9—C1043.9 (4)
C8—Fe1—C3—C2120.65 (16)C11—Fe1—C9—C1038.12 (18)
C5—Fe1—C3—C281.64 (16)C7—Fe1—C9—C1082.06 (19)
C9—Fe1—C3—C2162.57 (15)C4—Fe1—C9—C10119.47 (17)
C2—C3—C4—C50.5 (3)C8—Fe1—C9—C10119.5 (3)
Fe1—C3—C4—C559.14 (18)C5—Fe1—C9—C1077.6 (2)
C2—C3—C4—Fe159.60 (18)C2—Fe1—C9—C10165.3 (3)
C6—Fe1—C4—C382.31 (16)C3—Fe1—C9—C879.3 (2)
C11—Fe1—C4—C3166.2 (3)C6—Fe1—C9—C8163.4 (3)
C10—Fe1—C4—C3161.61 (16)C11—Fe1—C9—C881.3 (2)
C7—Fe1—C4—C347.4 (4)C10—Fe1—C9—C8119.5 (3)
C8—Fe1—C4—C378.63 (19)C7—Fe1—C9—C837.39 (18)
C5—Fe1—C4—C3119.8 (2)C4—Fe1—C9—C8121.07 (18)
C9—Fe1—C4—C3120.01 (16)C5—Fe1—C9—C8162.96 (17)
C2—Fe1—C4—C338.18 (16)C2—Fe1—C9—C845.9 (4)
C3—Fe1—C4—C5119.8 (2)C8—C9—C10—C110.3 (3)
C6—Fe1—C4—C537.44 (16)Fe1—C9—C10—C1159.61 (18)
C11—Fe1—C4—C546.5 (4)C8—C9—C10—Fe159.34 (19)
C10—Fe1—C4—C578.64 (19)C3—Fe1—C10—C945.9 (4)
C7—Fe1—C4—C5167.2 (3)C6—Fe1—C10—C9162.47 (16)
C8—Fe1—C4—C5161.61 (16)C11—Fe1—C10—C9118.8 (2)
C9—Fe1—C4—C5120.23 (16)C7—Fe1—C10—C980.83 (19)
C2—Fe1—C4—C581.58 (17)C4—Fe1—C10—C978.70 (19)
C3—C4—C5—C60.2 (3)C8—Fe1—C10—C937.44 (17)
Fe1—C4—C5—C658.83 (18)C5—Fe1—C10—C9120.59 (17)
C3—C4—C5—Fe159.03 (18)C2—Fe1—C10—C9165.1 (3)
C3—Fe1—C5—C437.29 (15)C3—Fe1—C10—C11164.7 (3)
C6—Fe1—C5—C4119.8 (2)C6—Fe1—C10—C1178.8 (2)
C11—Fe1—C5—C4161.50 (16)C7—Fe1—C10—C1137.93 (18)
C10—Fe1—C5—C4119.61 (17)C4—Fe1—C10—C11162.54 (17)
C7—Fe1—C5—C4167.1 (3)C8—Fe1—C10—C1181.33 (19)
C8—Fe1—C5—C446.8 (4)C5—Fe1—C10—C11120.65 (18)
C9—Fe1—C5—C478.27 (19)C9—Fe1—C10—C11118.8 (2)
C2—Fe1—C5—C481.71 (17)C2—Fe1—C10—C1146.3 (4)
C3—Fe1—C5—C682.51 (17)C8—C7—C11—C100.0 (3)
C11—Fe1—C5—C678.70 (19)Fe1—C7—C11—C1059.69 (19)
C10—Fe1—C5—C6120.59 (17)C8—C7—C11—Fe159.7 (2)
C7—Fe1—C5—C647.3 (4)C9—C10—C11—C70.1 (3)
C4—Fe1—C5—C6119.8 (2)Fe1—C10—C11—C759.79 (19)
C8—Fe1—C5—C6166.6 (3)C9—C10—C11—Fe159.94 (18)
C9—Fe1—C5—C6161.93 (16)C3—Fe1—C11—C744.4 (4)
C2—Fe1—C5—C638.09 (16)C6—Fe1—C11—C7121.34 (17)
C4—C5—C6—C20.8 (3)C10—Fe1—C11—C7118.6 (2)
Fe1—C5—C6—C259.76 (17)C4—Fe1—C11—C7162.4 (3)
C4—C5—C6—Fe158.96 (18)C8—Fe1—C11—C737.32 (17)
C3—C2—C6—C51.1 (3)C5—Fe1—C11—C7163.51 (17)
C1—C2—C6—C5177.9 (2)C9—Fe1—C11—C780.96 (18)
Fe1—C2—C6—C559.76 (18)C2—Fe1—C11—C779.1 (2)
C3—C2—C6—Fe158.68 (17)C3—Fe1—C11—C10163.1 (3)
C1—C2—C6—Fe1122.4 (2)C6—Fe1—C11—C10120.02 (17)
C3—Fe1—C6—C580.86 (17)C7—Fe1—C11—C10118.6 (2)
C11—Fe1—C6—C5120.08 (17)C4—Fe1—C11—C1043.7 (4)
C10—Fe1—C6—C577.88 (19)C8—Fe1—C11—C1081.32 (18)
C7—Fe1—C6—C5161.83 (17)C5—Fe1—C11—C1077.85 (19)
C4—Fe1—C6—C537.34 (16)C9—Fe1—C11—C1037.67 (17)
C8—Fe1—C6—C5166.1 (3)C2—Fe1—C11—C10162.29 (16)
C9—Fe1—C6—C545.7 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(C6H4F)2]
Mr432.06
Crystal system, space groupTetragonal, P42/n
Temperature (K)103
a, c (Å)16.968 (6), 5.8668 (17)
V3)1689.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.623, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
10691, 1483, 1361
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.067, 1.22
No. of reflections1483
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), yadokari-XG (Wakita, 2005).

Selected geometric parameters (Å, º) top
F1—C11.365 (3)C1—C21.448 (4)
C1—C1i1.331 (5)
C1i—C1—F1116.2 (3)F1—C1—C2113.4 (2)
C1i—C1—C2130.4 (3)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds