Download citation
Download citation
link to html
The title compound, 2C4H8N3O+·SO42−, crystallizes with two creatininium cations and one sulfate anion in the asymmetric unit. Cations and anions dimerize through N—H...O hydrogen bonds forming R22(8) ring motifs. Furthermore, these rings are connected via N—H...O hydrogen bonds, leading to C22(6) and C22(8) chain motifs. These inter­actions lead to a parallel set of hydrogen-bonded lamellar aggregations propagating along the c axis of the unit cell. Another cation is situated above these sheets, leading to a grid-like structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046119/sj2364sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046119/sj2364Isup2.hkl
Contains datablock I

CCDC reference: 667261

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 10.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT432_ALERT_2_C Short Inter X...Y Contact O13 .. C12 .. 3.01 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Creatine, a nitrogenous organic acid, is found in the muscle tissue of vertebrates mainly in the form of phosphocreatine and supplies energy for muscle contraction. It is a derivative of the amino acids glycine and arginine, important in muscle as a store of phosphate for resynthesis of ATP during muscle contraction and work. In renal physiology, creatinine clearance (Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the Glomerular Filtration Rate (GFR) of the kidneys. An abnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980).

The asymmetric unit of the title compound, (I), 2(C4H8N3O+)·SO42-, consists of two crystallographically independent protonated creatine residues and one sulfate anion (Fig. 1). Two protons of the sulfuric acid have migrated to protonate two creatine molecules forming creatinium cations. The protonation on this site is evident from the C—N bond distances and the values are comparable with creatinium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007) and creatinium benzoate (Bahadur, Sivapragasam et al., 2007). Both the cations are oriented nearly perpendicular to each other with a dihedral angle of 86.45 (6)° between them.

The crystal structure is stabilized by an intricate three dimensional N—H···O hydrogen bonding network (Fig. 2; Table 2). Cations are linked to anions forming ion pairs through N—H···O hydrogen bonds that produce R22(8) ring motifs (Bernstein et al., 1995). Further these rings are connected via N—H···O hydrogen bonds leading to chain C22(6) and C22(8) motifs (Fig. 3). These ring and chain motifs result in lamellar aggreation or parallel sheets along the c axis of the unit cell in opposing directions. Another cation is situated just above these sheets through another R22(8) motif forming a grid-like structure.

Related literature top

For related structures see Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007). For the notation of hydrogen-bonding motifs, see Bernstein et al. (1995). For information on the biological importance of creatinine, refer to Madaras & Buck (1996); Narayanan & Appleton, (1980).

Experimental top

The title compound was crystallized from an aqueous mixture containing creatinine and sulfuric acid in the stoichiometric ratio of 2:1 at room temperature by the slow evaporation technique.

Refinement top

H atoms involved in the H-bonding interactions were located from a difference Fourier map and refined isotropically. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Structure description top

Creatine, a nitrogenous organic acid, is found in the muscle tissue of vertebrates mainly in the form of phosphocreatine and supplies energy for muscle contraction. It is a derivative of the amino acids glycine and arginine, important in muscle as a store of phosphate for resynthesis of ATP during muscle contraction and work. In renal physiology, creatinine clearance (Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the Glomerular Filtration Rate (GFR) of the kidneys. An abnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980).

The asymmetric unit of the title compound, (I), 2(C4H8N3O+)·SO42-, consists of two crystallographically independent protonated creatine residues and one sulfate anion (Fig. 1). Two protons of the sulfuric acid have migrated to protonate two creatine molecules forming creatinium cations. The protonation on this site is evident from the C—N bond distances and the values are comparable with creatinium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007) and creatinium benzoate (Bahadur, Sivapragasam et al., 2007). Both the cations are oriented nearly perpendicular to each other with a dihedral angle of 86.45 (6)° between them.

The crystal structure is stabilized by an intricate three dimensional N—H···O hydrogen bonding network (Fig. 2; Table 2). Cations are linked to anions forming ion pairs through N—H···O hydrogen bonds that produce R22(8) ring motifs (Bernstein et al., 1995). Further these rings are connected via N—H···O hydrogen bonds leading to chain C22(6) and C22(8) motifs (Fig. 3). These ring and chain motifs result in lamellar aggreation or parallel sheets along the c axis of the unit cell in opposing directions. Another cation is situated just above these sheets through another R22(8) motif forming a grid-like structure.

For related structures see Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007). For the notation of hydrogen-bonding motifs, see Bernstein et al. (1995). For information on the biological importance of creatinine, refer to Madaras & Buck (1996); Narayanan & Appleton, (1980).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as double dashed lines.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H-bonds (dashed lines) are omitted for clarity.
[Figure 3] Fig. 3. A view of R22(8) ring and C22(6) and C22(8) chain motifs formed through one of the cations and the anion. H bonds are drawn as dashed lines.
bis(creatininium) sulfate top
Crystal data top
2C4H8N3O+·SO42F(000) = 680
Mr = 324.33Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.469 (6) Åθ = 9.6–14.1°
b = 7.560 (3) ŵ = 0.28 mm1
c = 14.382 (9) ÅT = 293 K
β = 97.347 (11)°Block, colourless
V = 1344.6 (12) Å30.23 × 0.20 × 0.17 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
2073 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω–2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.948, Tmax = 0.960l = 1716
2856 measured reflections3 standard reflections every 60 min
2343 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7548P]
where P = (Fo2 + 2Fc2)/3
2343 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
2C4H8N3O+·SO42V = 1344.6 (12) Å3
Mr = 324.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.469 (6) ŵ = 0.28 mm1
b = 7.560 (3) ÅT = 293 K
c = 14.382 (9) Å0.23 × 0.20 × 0.17 mm
β = 97.347 (11)°
Data collection top
Nonius MACH3
diffractometer
2073 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.948, Tmax = 0.9603 standard reflections every 60 min
2856 measured reflections intensity decay: none
2343 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
2343 reflectionsΔρmin = 0.35 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4691 (2)0.1587 (3)0.09121 (18)0.0539 (6)
H11A0.54290.11990.10280.081*
H11B0.43850.12250.02950.081*
H11C0.42860.10710.13680.081*
N110.46512 (12)0.3494 (2)0.09796 (11)0.0328 (4)
C120.36537 (14)0.4484 (3)0.07720 (13)0.0329 (4)
H12A0.31100.40720.11470.039*
H12B0.33710.43990.01130.039*
C130.40016 (15)0.6342 (3)0.10316 (13)0.0351 (4)
O10.34592 (12)0.7661 (2)0.09920 (13)0.0581 (5)
N140.50903 (13)0.6252 (2)0.13392 (12)0.0340 (4)
N150.64548 (15)0.4119 (3)0.16074 (14)0.0446 (4)
C150.54436 (15)0.4556 (3)0.13264 (12)0.0310 (4)
H140.5512 (19)0.714 (3)0.1593 (17)0.053 (7)*
H15A0.668 (2)0.297 (4)0.1600 (18)0.063*
H15B0.687 (2)0.495 (4)0.1682 (19)0.063*
C210.06709 (18)0.5279 (3)0.71596 (14)0.0439 (5)
H21A0.08730.40540.71830.066*
H21B0.00900.53820.71970.066*
H21C0.10690.58950.76770.066*
N210.09134 (12)0.60459 (19)0.62860 (10)0.0302 (3)
C220.07541 (16)0.7917 (2)0.60682 (13)0.0344 (4)
H22A0.11940.86530.65200.041*
H22B0.00010.82520.60530.041*
C230.11147 (15)0.8053 (2)0.51119 (13)0.0337 (4)
O20.12097 (13)0.93682 (19)0.46507 (11)0.0522 (4)
N240.13415 (12)0.6355 (2)0.48531 (11)0.0291 (3)
N250.15128 (14)0.3535 (2)0.55284 (13)0.0351 (4)
C250.12714 (13)0.5222 (2)0.55775 (11)0.0253 (4)
H240.1656 (19)0.609 (3)0.4365 (17)0.050 (7)*
H25A0.1556 (18)0.286 (3)0.6023 (17)0.046 (6)*
H25B0.1728 (19)0.316 (3)0.5017 (17)0.047 (6)*
S0.25681 (3)0.39808 (5)0.30401 (3)0.02599 (14)
O110.23687 (12)0.27155 (18)0.37745 (10)0.0429 (4)
O120.24043 (12)0.58043 (16)0.33621 (10)0.0388 (3)
O130.36978 (10)0.38111 (19)0.28408 (9)0.0400 (3)
O140.18331 (10)0.36562 (18)0.21808 (9)0.0370 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0665 (15)0.0276 (11)0.0668 (15)0.0012 (10)0.0050 (12)0.0057 (10)
N110.0348 (8)0.0283 (8)0.0361 (8)0.0017 (7)0.0074 (7)0.0032 (6)
C120.0307 (9)0.0368 (10)0.0316 (9)0.0045 (8)0.0054 (7)0.0020 (8)
C130.0319 (9)0.0339 (10)0.0388 (10)0.0005 (8)0.0019 (8)0.0007 (8)
O10.0420 (8)0.0379 (9)0.0906 (13)0.0094 (7)0.0067 (8)0.0055 (8)
N140.0305 (8)0.0272 (8)0.0432 (9)0.0018 (7)0.0010 (7)0.0036 (7)
N150.0357 (10)0.0387 (10)0.0572 (11)0.0060 (8)0.0025 (8)0.0039 (9)
C150.0345 (10)0.0325 (10)0.0264 (8)0.0010 (8)0.0061 (7)0.0000 (7)
C210.0497 (12)0.0510 (13)0.0340 (10)0.0146 (10)0.0171 (9)0.0072 (9)
N210.0358 (8)0.0272 (8)0.0290 (8)0.0026 (6)0.0095 (6)0.0005 (6)
C220.0384 (10)0.0266 (9)0.0386 (10)0.0013 (8)0.0059 (8)0.0052 (8)
C230.0332 (10)0.0285 (10)0.0390 (10)0.0001 (8)0.0032 (8)0.0024 (8)
O20.0641 (10)0.0334 (8)0.0613 (10)0.0050 (7)0.0166 (8)0.0154 (7)
N240.0298 (8)0.0303 (8)0.0280 (8)0.0016 (6)0.0064 (6)0.0014 (6)
N250.0435 (9)0.0289 (9)0.0348 (9)0.0083 (7)0.0126 (7)0.0024 (7)
C250.0203 (8)0.0277 (9)0.0275 (8)0.0001 (7)0.0019 (6)0.0008 (7)
S0.0302 (2)0.0229 (2)0.0256 (2)0.00194 (17)0.00626 (17)0.00078 (16)
O110.0582 (9)0.0341 (7)0.0387 (7)0.0008 (6)0.0154 (6)0.0096 (6)
O120.0516 (8)0.0265 (7)0.0417 (7)0.0028 (6)0.0196 (6)0.0054 (6)
O130.0306 (7)0.0489 (8)0.0411 (7)0.0093 (6)0.0073 (6)0.0091 (6)
O140.0359 (7)0.0405 (8)0.0340 (7)0.0020 (6)0.0021 (5)0.0045 (6)
Geometric parameters (Å, º) top
C11—N111.447 (3)C21—H21B0.9600
C11—H11A0.9600C21—H21C0.9600
C11—H11B0.9600N21—C251.320 (2)
C11—H11C0.9600N21—C221.457 (2)
N11—C151.320 (2)C22—C231.504 (3)
N11—C121.450 (2)C22—H22A0.9700
C12—C131.503 (3)C22—H22B0.9700
C12—H12A0.9700C23—O21.209 (2)
C12—H12B0.9700C23—N241.376 (2)
C13—O11.203 (2)N24—C251.360 (2)
C13—N141.375 (3)N24—H240.87 (3)
N14—C151.357 (2)N25—C251.315 (2)
N14—H140.90 (3)N25—H25A0.87 (2)
N15—C151.316 (3)N25—H25B0.86 (3)
N15—H15A0.92 (3)S—O141.4621 (15)
N15—H15B0.81 (3)S—O111.4695 (15)
C21—N211.450 (2)S—O121.4768 (14)
C21—H21A0.9600S—O131.4785 (15)
N11—C11—H11A109.5N21—C21—H21C109.5
N11—C11—H11B109.5H21A—C21—H21C109.5
H11A—C11—H11B109.5H21B—C21—H21C109.5
N11—C11—H11C109.5C25—N21—C21127.52 (16)
H11A—C11—H11C109.5C25—N21—C22110.03 (15)
H11B—C11—H11C109.5C21—N21—C22122.44 (15)
C15—N11—C11126.92 (18)N21—C22—C23102.39 (15)
C15—N11—C12110.18 (16)N21—C22—H22A111.3
C11—N11—C12122.48 (17)C23—C22—H22A111.3
N11—C12—C13102.61 (14)N21—C22—H22B111.3
N11—C12—H12A111.2C23—C22—H22B111.3
C13—C12—H12A111.2H22A—C22—H22B109.2
N11—C12—H12B111.2O2—C23—N24125.49 (18)
C13—C12—H12B111.2O2—C23—C22128.28 (18)
H12A—C12—H12B109.2N24—C23—C22106.23 (15)
O1—C13—N14125.63 (19)C25—N24—C23110.17 (15)
O1—C13—C12128.37 (18)C25—N24—H24123.5 (15)
N14—C13—C12106.00 (16)C23—N24—H24124.3 (15)
C15—N14—C13110.57 (16)C25—N25—H25A121.0 (15)
C15—N14—H14122.4 (15)C25—N25—H25B117.6 (16)
C13—N14—H14126.6 (15)H25A—N25—H25B121 (2)
C15—N15—H15A121.2 (16)N25—C25—N21127.00 (17)
C15—N15—H15B114.4 (19)N25—C25—N24122.17 (17)
H15A—N15—H15B123 (3)N21—C25—N24110.81 (16)
N15—C15—N11127.21 (19)O14—S—O11110.66 (9)
N15—C15—N14122.22 (18)O14—S—O12108.96 (8)
N11—C15—N14110.55 (16)O11—S—O12109.84 (9)
N21—C21—H21A109.5O14—S—O13109.35 (8)
N21—C21—H21B109.5O11—S—O13109.62 (8)
H21A—C21—H21B109.5O12—S—O13108.37 (8)
C15—N11—C12—C131.60 (19)C25—N21—C22—C231.55 (19)
C11—N11—C12—C13174.59 (18)C21—N21—C22—C23179.86 (17)
N11—C12—C13—O1179.4 (2)N21—C22—C23—O2174.3 (2)
N11—C12—C13—N140.18 (19)N21—C22—C23—N244.73 (19)
O1—C13—N14—C15177.7 (2)O2—C23—N24—C25172.70 (18)
C12—C13—N14—C151.9 (2)C22—C23—N24—C256.4 (2)
C11—N11—C15—N156.3 (3)C21—N21—C25—N252.1 (3)
C12—N11—C15—N15178.89 (19)C22—N21—C25—N25179.40 (17)
C11—N11—C15—N14175.47 (19)C21—N21—C25—N24176.20 (18)
C12—N11—C15—N142.9 (2)C22—N21—C25—N242.3 (2)
C13—N14—C15—N15178.63 (18)C23—N24—C25—N25175.95 (16)
C13—N14—C15—N113.0 (2)C23—N24—C25—N215.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O13i0.90 (3)1.74 (3)2.639 (2)176 (2)
N15—H15A···O12ii0.92 (3)1.99 (3)2.879 (2)163 (2)
N15—H15B···O11i0.81 (3)2.42 (3)3.171 (3)154 (3)
N24—H24···O120.87 (3)1.83 (3)2.693 (2)173 (2)
N25—H25A···O14iii0.87 (2)2.01 (3)2.882 (3)174 (2)
N25—H25B···O110.86 (3)2.08 (3)2.928 (3)169 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C4H8N3O+·SO42
Mr324.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.469 (6), 7.560 (3), 14.382 (9)
β (°) 97.347 (11)
V3)1344.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerNonius MACH3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.948, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
2856, 2343, 2073
Rint0.013
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.06
No. of reflections2343
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.35

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Bruker, 2000), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O13i0.90 (3)1.74 (3)2.639 (2)176 (2)
N15—H15A···O12ii0.92 (3)1.99 (3)2.879 (2)163 (2)
N15—H15B···O11i0.81 (3)2.42 (3)3.171 (3)154 (3)
N24—H24···O120.87 (3)1.83 (3)2.693 (2)173 (2)
N25—H25A···O14iii0.87 (2)2.01 (3)2.882 (3)174 (2)
N25—H25B···O110.86 (3)2.08 (3)2.928 (3)169 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds