Download citation
Download citation
link to html
The title compound, {[Ag(C14H14N2)](C8H10NO3S)}n, adopts a polymeric chain structure, where each AgI cation binds two N atoms from two different 1,2-bis­[(1H-imidazol-1-yl)methyl]benzene (IBI) ligands in a linear coordination geometry. Each IBI ligand bridges two neighbouring AgI atoms to form the polymer chain. The 2-amino-3,5-dimethyl­benzene­sulfonate counter-ion does not coordinate to the AgI centre but forms an intra­molecular N—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704963X/sj2368sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704963X/sj2368Isup2.hkl
Contains datablock I

CCDC reference: 667156

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.147
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C7 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C8 PLAT420_ALERT_2_C D-H Without Acceptor N5 - HN1 ... ? PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 37 N2 -AG1 -N1 -C14 -35.20 1.00 1.545 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 38 N2 -AG1 -N1 -C12 134.70 0.70 1.545 1.555 1.555 1.555 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT731_ALERT_1_C Bond Calc 0.86(4), Rep 0.858(10) ...... 4.00 su-Ra N5 -HN1 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.86(4), Rep 0.863(10) ...... 4.00 su-Ra N5 -HN2 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(4), Rep 0.863(10) ...... 4.00 su-Ra N5 -H2# 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (9) 0.96 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Sulfonates are generally perceived to be weaker ligands with low coordinating ability (Cote & Shimizu, 2003). Some silver(I) sulfonate compounds, modified by secondary nitrogen-based ligands, have been documented (Li et al., 2006). In most of these silver(I) sulfonate complexes, the sulfonate ligand acts solely as a counter-anion with no coordination to the AgI centre. Herein, we present a new sulfonate coordination polymer, namely [Ag(IBI)].L (I), where IBI = 1,2-bis((1H-imidazol-1-yl)methyl)benzene and HL = 2-amino-3,5-dimethylbenzenesulfonic acid.

In (I) the AgI cation is coordinated by N atoms from two different IBI ligands in a linear coordination geometry (Fig. 1). The Ag—N (IBI) distance in (I), Table 1, is similar to that in several related compounds (Li et al., 2006). The IBI ligand bridges two neighboring AgI atoms, forming a polymeric chain structure (Fig. 2). Notably, the L- ligand does not coordinate to the AgI center, acting only as a counter-anion and forming an intramolecular N—H···O hydrogen bond, Table 2.

Related literature top

For information on sulfonates as ligands, see Cote & Shimizu (2003). For related structures of silver sulfonates, see Li et al. (2006).

Experimental top

An aqueous solution (15 ml) of 2-amino-3,5-dimethylbenzenesulfonic acid (1 mmol) was added to solid Ag2CO3 (0.5 mmol) and stirred for several minutes until no further CO2 was given off. 1-(3-(1H-imidazol-1-yl)methyl)benzyl)-1H-imidazole (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved in ammonium hydroxide. Colorless crystals of (I) were obtained by evaporation of this solution for several days at room temperature.

Refinement top

H atoms bound to N atoms were located in a difference map and refined freely, with Uiso(H) = 1.2Ueq(N). H atoms bonded to C atoms were positioned geometrically with and refined as riding, with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms.

Structure description top

Sulfonates are generally perceived to be weaker ligands with low coordinating ability (Cote & Shimizu, 2003). Some silver(I) sulfonate compounds, modified by secondary nitrogen-based ligands, have been documented (Li et al., 2006). In most of these silver(I) sulfonate complexes, the sulfonate ligand acts solely as a counter-anion with no coordination to the AgI centre. Herein, we present a new sulfonate coordination polymer, namely [Ag(IBI)].L (I), where IBI = 1,2-bis((1H-imidazol-1-yl)methyl)benzene and HL = 2-amino-3,5-dimethylbenzenesulfonic acid.

In (I) the AgI cation is coordinated by N atoms from two different IBI ligands in a linear coordination geometry (Fig. 1). The Ag—N (IBI) distance in (I), Table 1, is similar to that in several related compounds (Li et al., 2006). The IBI ligand bridges two neighboring AgI atoms, forming a polymeric chain structure (Fig. 2). Notably, the L- ligand does not coordinate to the AgI center, acting only as a counter-anion and forming an intramolecular N—H···O hydrogen bond, Table 2.

For information on sulfonates as ligands, see Cote & Shimizu (2003). For related structures of silver sulfonates, see Li et al. (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) x, y - 1, z.
[Figure 2] Fig. 2. A view of the chain structure of (I).
catena-Poly[[silver(I)-µ-1,2-bis[(1H-imidazol-1-yl)methyl]benzene- κ2N3:N3'] 2-amino-3,5-dimethylbenzenesulfonate] top
Crystal data top
[Ag(C14H14N2)](C8H10NO3S)F(000) = 1112
Mr = 546.39Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15895 reflections
a = 10.683 (2) Åθ = 3.0–27.5°
b = 13.987 (3) ŵ = 1.02 mm1
c = 15.385 (3) ÅT = 293 K
β = 102.07 (3)°Block, colourless
V = 2248.1 (8) Å30.27 × 0.21 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5122 independent reflections
Radiation source: rotating anode3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1213
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.755, Tmax = 0.824l = 1919
20972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0791P)2 + 1.8517P]
where P = (Fo2 + 2Fc2)/3
5122 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 1.69 e Å3
3 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Ag(C14H14N2)](C8H10NO3S)V = 2248.1 (8) Å3
Mr = 546.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.683 (2) ŵ = 1.02 mm1
b = 13.987 (3) ÅT = 293 K
c = 15.385 (3) Å0.27 × 0.21 × 0.19 mm
β = 102.07 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5122 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3779 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.824Rint = 0.034
20972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.69 e Å3
5122 reflectionsΔρmin = 1.08 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.80506 (3)0.22447 (2)0.46567 (3)0.05751 (16)
C10.7721 (4)0.4262 (3)0.7408 (2)0.0417 (8)
C20.6586 (4)0.4087 (3)0.7712 (3)0.0485 (10)
C30.5829 (4)0.4850 (4)0.7852 (3)0.0558 (11)
C40.6187 (5)0.5765 (3)0.7683 (3)0.0577 (11)
H40.56660.62710.77760.069*
C50.7290 (5)0.5963 (3)0.7381 (3)0.0521 (10)
C60.8072 (4)0.5209 (3)0.7249 (2)0.0462 (9)
H60.88270.53270.70560.055*
C70.4636 (6)0.4682 (5)0.8230 (5)0.0911 (19)
H7A0.45240.40080.83050.137*
H7B0.39010.49350.78280.137*
H7C0.47330.49960.87950.137*
C80.7649 (7)0.6982 (4)0.7215 (4)0.0848 (19)
H8A0.70030.74080.73390.127*
H8B0.77150.70520.66060.127*
H8C0.84570.71340.75960.127*
C120.8000 (5)0.4069 (3)0.3505 (3)0.0607 (12)
H120.78530.37070.29860.073*
C130.8194 (5)0.5016 (3)0.3547 (3)0.0602 (12)
H130.82140.54240.30730.072*
C140.8266 (4)0.4461 (3)0.4867 (3)0.0416 (8)
H140.83460.44330.54800.050*
C150.7291 (3)0.6783 (2)0.4694 (2)0.0359 (7)
C160.7329 (3)0.7772 (2)0.4811 (2)0.0328 (7)
C170.8609 (3)0.8280 (2)0.4959 (3)0.0367 (8)
H17A0.92130.79420.54130.044*
H17B0.89280.82570.44140.044*
C180.6192 (4)0.8265 (3)0.4773 (3)0.0445 (9)
H180.62110.89240.48570.053*
C190.5030 (4)0.7791 (3)0.4613 (4)0.0589 (12)
H190.42750.81320.45840.071*
C200.4992 (4)0.6823 (4)0.4497 (4)0.0634 (13)
H200.42110.65050.43900.076*
C210.6116 (4)0.6316 (3)0.4540 (3)0.0537 (10)
H210.60850.56560.44650.064*
C220.8532 (4)0.6233 (2)0.4755 (3)0.0425 (8)
H22A0.90710.65780.44260.051*
H22B0.89780.62090.53720.051*
N10.8051 (3)0.3716 (2)0.4339 (2)0.0429 (7)
N30.8356 (3)0.5266 (2)0.4413 (2)0.0388 (7)
N50.6217 (5)0.3171 (3)0.7929 (4)0.0778 (13)
O10.9699 (4)0.3667 (3)0.6837 (2)0.0685 (9)
O20.7907 (4)0.2586 (3)0.6756 (3)0.0724 (10)
O30.9261 (3)0.2952 (2)0.8160 (2)0.0543 (7)
S10.87311 (11)0.32912 (7)0.72741 (6)0.0452 (2)
N40.8549 (3)0.92730 (19)0.52284 (19)0.0332 (6)
C110.8364 (4)1.0041 (3)0.4692 (2)0.0370 (8)
H110.82981.00200.40800.044*
N20.8289 (3)1.0823 (2)0.5148 (2)0.0401 (7)
C90.8436 (4)1.0544 (3)0.6015 (3)0.0468 (9)
H90.84261.09510.64920.056*
C100.8597 (4)0.9588 (3)0.6074 (3)0.0455 (9)
H100.87170.92190.65870.055*
HN10.569 (3)0.2884 (16)0.819 (3)0.068*
HN20.642 (6)0.265 (2)0.769 (4)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0623 (3)0.02041 (17)0.0961 (3)0.00368 (12)0.0308 (2)0.01127 (14)
C10.057 (2)0.0355 (19)0.0313 (17)0.0008 (16)0.0051 (15)0.0009 (15)
C20.062 (3)0.041 (2)0.040 (2)0.0128 (18)0.0033 (17)0.0023 (17)
C30.052 (3)0.068 (3)0.047 (2)0.000 (2)0.0098 (18)0.001 (2)
C40.072 (3)0.049 (2)0.051 (2)0.019 (2)0.011 (2)0.003 (2)
C50.082 (3)0.035 (2)0.040 (2)0.0051 (19)0.013 (2)0.0043 (17)
C60.065 (3)0.040 (2)0.0344 (19)0.0027 (18)0.0128 (17)0.0016 (16)
C70.067 (4)0.103 (5)0.111 (5)0.000 (3)0.036 (3)0.012 (4)
C80.148 (6)0.036 (2)0.075 (4)0.002 (3)0.032 (4)0.008 (2)
C120.105 (4)0.033 (2)0.047 (2)0.007 (2)0.023 (2)0.0101 (19)
C130.106 (4)0.032 (2)0.045 (2)0.005 (2)0.023 (2)0.0028 (18)
C140.057 (2)0.0232 (17)0.045 (2)0.0030 (14)0.0111 (17)0.0020 (15)
C150.0398 (19)0.0262 (16)0.0424 (19)0.0011 (13)0.0102 (15)0.0016 (14)
C160.0402 (19)0.0254 (16)0.0337 (17)0.0001 (13)0.0100 (13)0.0006 (13)
C170.0408 (19)0.0198 (15)0.050 (2)0.0014 (13)0.0106 (15)0.0044 (14)
C180.044 (2)0.0316 (18)0.060 (2)0.0057 (15)0.0156 (18)0.0015 (17)
C190.036 (2)0.061 (3)0.082 (3)0.0062 (19)0.017 (2)0.004 (2)
C200.038 (2)0.062 (3)0.091 (4)0.012 (2)0.014 (2)0.007 (3)
C210.048 (2)0.036 (2)0.078 (3)0.0099 (17)0.014 (2)0.008 (2)
C220.046 (2)0.0205 (16)0.061 (2)0.0001 (14)0.0115 (17)0.0042 (16)
N10.059 (2)0.0200 (14)0.0521 (18)0.0001 (13)0.0167 (15)0.0022 (13)
N30.0522 (19)0.0200 (14)0.0448 (17)0.0013 (12)0.0116 (14)0.0011 (12)
N50.075 (3)0.056 (3)0.106 (4)0.015 (2)0.025 (3)0.004 (3)
O10.093 (3)0.059 (2)0.064 (2)0.0174 (18)0.0403 (18)0.0161 (16)
O20.079 (2)0.0484 (18)0.078 (2)0.0095 (17)0.0085 (18)0.0262 (17)
O30.0555 (18)0.0563 (18)0.0488 (16)0.0018 (14)0.0056 (13)0.0192 (14)
S10.0616 (6)0.0342 (5)0.0385 (5)0.0043 (4)0.0073 (4)0.0014 (4)
N40.0432 (16)0.0206 (13)0.0367 (15)0.0002 (11)0.0105 (12)0.0020 (11)
C110.048 (2)0.0249 (16)0.0382 (18)0.0007 (14)0.0098 (15)0.0016 (14)
N20.0519 (19)0.0213 (14)0.0497 (18)0.0009 (12)0.0168 (14)0.0003 (13)
C90.068 (3)0.0287 (18)0.046 (2)0.0009 (17)0.0170 (19)0.0112 (16)
C100.066 (3)0.0343 (19)0.038 (2)0.0037 (17)0.0163 (18)0.0013 (16)
Geometric parameters (Å, º) top
Ag1—N12.115 (3)C15—C221.519 (5)
Ag1—N2i2.124 (3)C16—C181.387 (5)
C1—C21.410 (6)C16—C171.515 (5)
C1—C61.412 (6)C17—N41.454 (4)
C1—S11.773 (4)C17—H17A0.9700
C2—C31.383 (6)C17—H17B0.9700
C2—N51.401 (6)C18—C191.383 (6)
C3—C41.376 (7)C18—H180.9300
C3—C71.525 (7)C19—C201.365 (7)
C4—C51.383 (7)C19—H190.9300
C4—H40.9300C20—C211.385 (7)
C5—C61.386 (6)C20—H200.9300
C5—C81.512 (7)C21—H210.9300
C6—H60.9300C22—N31.448 (4)
C7—H7A0.9600C22—H22A0.9700
C7—H7B0.9600C22—H22B0.9700
C7—H7C0.9600N5—HN10.858 (10)
C8—H8A0.9600N5—HN20.863 (10)
C8—H8B0.9600O1—S11.445 (3)
C8—H8C0.9600O2—S11.446 (4)
C12—C131.341 (6)O3—S11.443 (3)
C12—N11.365 (6)N4—C111.343 (5)
C12—H120.9300N4—C101.365 (5)
C13—N31.353 (5)C11—N21.311 (5)
C13—H130.9300C11—H110.9300
C14—N11.312 (5)N2—C91.368 (5)
C14—N31.339 (5)N2—Ag1ii2.124 (3)
C14—H140.9300C9—C101.348 (5)
C15—C211.390 (5)C9—H90.9300
C15—C161.396 (5)C10—H100.9300
N1—Ag1—N2i170.93 (13)C16—C17—H17B108.9
C2—C1—C6119.9 (4)H17A—C17—H17B107.7
C2—C1—S1119.4 (3)C19—C18—C16121.0 (4)
C6—C1—S1120.6 (3)C19—C18—H18119.5
C3—C2—N5117.7 (4)C16—C18—H18119.5
C3—C2—C1119.3 (4)C20—C19—C18120.0 (4)
N5—C2—C1122.9 (4)C20—C19—H19120.0
C4—C3—C2119.6 (4)C18—C19—H19120.0
C4—C3—C7120.2 (5)C19—C20—C21120.0 (4)
C2—C3—C7120.2 (5)C19—C20—H20120.0
C3—C4—C5122.7 (4)C21—C20—H20120.0
C3—C4—H4118.6C20—C21—C15120.7 (4)
C5—C4—H4118.6C20—C21—H21119.6
C4—C5—C6118.6 (4)C15—C21—H21119.6
C4—C5—C8120.6 (5)N3—C22—C15113.8 (3)
C6—C5—C8120.7 (5)N3—C22—H22A108.8
C5—C6—C1119.9 (4)C15—C22—H22A108.8
C5—C6—H6120.1N3—C22—H22B108.8
C1—C6—H6120.1C15—C22—H22B108.8
C3—C7—H7A109.5H22A—C22—H22B107.7
C3—C7—H7B109.5C14—N1—C12105.2 (3)
H7A—C7—H7B109.5C14—N1—Ag1129.7 (3)
C3—C7—H7C109.5C12—N1—Ag1124.5 (3)
H7A—C7—H7C109.5C14—N3—C13106.7 (3)
H7B—C7—H7C109.5C14—N3—C22127.9 (3)
C5—C8—H8A109.5C13—N3—C22125.3 (3)
C5—C8—H8B109.5C2—N5—HN1141.7 (17)
H8A—C8—H8B109.5C2—N5—HN2124 (4)
C5—C8—H8C109.5HN1—N5—HN293 (4)
H8A—C8—H8C109.5O3—S1—O1112.4 (2)
H8B—C8—H8C109.5O3—S1—O2111.7 (2)
C13—C12—N1109.6 (4)O1—S1—O2113.9 (2)
C13—C12—H12125.2O3—S1—C1105.71 (19)
N1—C12—H12125.2O1—S1—C1106.67 (19)
C12—C13—N3106.9 (4)O2—S1—C1105.7 (2)
C12—C13—H13126.6C11—N4—C10107.4 (3)
N3—C13—H13126.6C11—N4—C17126.7 (3)
N1—C14—N3111.6 (3)C10—N4—C17125.8 (3)
N1—C14—H14124.2N2—C11—N4110.9 (3)
N3—C14—H14124.2N2—C11—H11124.6
C21—C15—C16119.2 (3)N4—C11—H11124.6
C21—C15—C22121.2 (3)C11—N2—C9106.0 (3)
C16—C15—C22119.5 (3)C11—N2—Ag1ii127.4 (3)
C18—C16—C15119.1 (3)C9—N2—Ag1ii126.5 (2)
C18—C16—C17121.9 (3)C10—C9—N2109.6 (3)
C15—C16—C17119.0 (3)C10—C9—H9125.2
N4—C17—C16113.5 (3)N2—C9—H9125.2
N4—C17—H17A108.9C9—C10—N4106.1 (3)
C16—C17—H17A108.9C9—C10—H10126.9
N4—C17—H17B108.9N4—C10—H10126.9
C6—C1—C2—C30.0 (6)C16—C15—C22—N3165.8 (3)
S1—C1—C2—C3177.2 (3)N3—C14—N1—C120.1 (5)
C6—C1—C2—N5176.4 (4)N3—C14—N1—Ag1171.3 (3)
S1—C1—C2—N50.8 (6)C13—C12—N1—C140.4 (6)
N5—C2—C3—C4177.3 (5)C13—C12—N1—Ag1171.5 (4)
C1—C2—C3—C40.7 (6)N2i—Ag1—N1—C1435.2 (10)
N5—C2—C3—C70.0 (7)N2i—Ag1—N1—C12134.7 (7)
C1—C2—C3—C7176.6 (4)N1—C14—N3—C130.3 (5)
C2—C3—C4—C50.4 (7)N1—C14—N3—C22177.1 (4)
C7—C3—C4—C5176.9 (5)C12—C13—N3—C140.6 (6)
C3—C4—C5—C60.5 (7)C12—C13—N3—C22177.0 (4)
C3—C4—C5—C8179.3 (5)C15—C22—N3—C1494.2 (5)
C4—C5—C6—C11.2 (6)C15—C22—N3—C1382.8 (5)
C8—C5—C6—C1179.9 (4)C2—C1—S1—O368.3 (3)
C2—C1—C6—C50.9 (6)C6—C1—S1—O3108.9 (3)
S1—C1—C6—C5178.1 (3)C2—C1—S1—O1171.8 (3)
N1—C12—C13—N30.6 (6)C6—C1—S1—O111.0 (4)
C21—C15—C16—C180.2 (5)C2—C1—S1—O250.2 (4)
C22—C15—C16—C18178.6 (4)C6—C1—S1—O2132.5 (4)
C21—C15—C16—C17178.7 (4)C16—C17—N4—C1192.5 (4)
C22—C15—C16—C172.5 (5)C16—C17—N4—C1083.4 (5)
C18—C16—C17—N411.5 (5)C10—N4—C11—N20.2 (4)
C15—C16—C17—N4169.6 (3)C17—N4—C11—N2176.3 (3)
C15—C16—C18—C190.7 (6)N4—C11—N2—C90.2 (4)
C17—C16—C18—C19178.2 (4)N4—C11—N2—Ag1ii178.3 (2)
C16—C18—C19—C200.6 (7)C11—N2—C9—C100.1 (5)
C18—C19—C20—C210.0 (8)Ag1ii—N2—C9—C10178.3 (3)
C19—C20—C21—C150.5 (8)N2—C9—C10—N40.0 (5)
C16—C15—C21—C200.4 (7)C11—N4—C10—C90.1 (5)
C22—C15—C21—C20179.2 (4)C17—N4—C10—C9176.4 (4)
C21—C15—C22—N315.4 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—HN2···O20.86 (1)2.36 (5)2.924 (7)123 (5)

Experimental details

Crystal data
Chemical formula[Ag(C14H14N2)](C8H10NO3S)
Mr546.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.683 (2), 13.987 (3), 15.385 (3)
β (°) 102.07 (3)
V3)2248.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.27 × 0.21 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.755, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
20972, 5122, 3779
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.08
No. of reflections5122
No. of parameters295
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.69, 1.08

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Ag1—N12.115 (3)Ag1—N2i2.124 (3)
N1—Ag1—N2i170.93 (13)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—HN2···O20.863 (10)2.36 (5)2.924 (7)123 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds