Download citation
Download citation
link to html
The crystal structure of the title compound, C7H7F3N+·C8H3Cl2O4, is stabilized by five N—H...O, one O—H...O, two C—H...O and three C—H...X (X = F, Cl) hydrogen bonds. Intra­molecular O—H...O and C—H...X hydrogen bonds generate edge-fused [S(7)R44(24)S(7)R22(10)S(7)R44(24)S(7)] motifs. The cations and anions are linked to each other by C—H...O hydrogen bonds, forming a chain along the c axis. This chain and the other hydrogen bonds form [R32(6)R12(4)S(7)R12(4)R44(18)R55(24)R44(18)R12(4)R12(4)S(7)R12(4)R32(6)] motifs. The dihedral angle between the planes of the aromatic rings in the cation and anion is 34.86 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051124/sj2370sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051124/sj2370Isup2.hkl
Contains datablock I

CCDC reference: 667399

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.099
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O4 .. 3.24 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1B .. O3 .. 2.72 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3 .. F1 .. 2.75 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H15 .. F2 .. 2.76 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H13 .. O3 .. 2.95 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H13 .. CL1 .. 2.85 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Secondary interactions are proposed to be important in the biological activities of molecules involved in biochemical processes in the living cell. Molecular interactions find their origin in the dispersion, polarization, electrostatic, charge transfer and exchange forces (Rigby et al., 1986; Buckingham, 1993). There is considerable current interest in the preparation of compounds constructed from two molecular networks as they provide a source of novel materials with highly anisotropic electrical, optical and magnetic properties (Mas-Torrent et al., 2003; Setifi et al., 2002; Bryce & Petty, 1995; Peng et al., 1998; Rombaut et al., 2001; Bredas et al., 1994).

We have been interested in hydrogen-bonding systems formed by organic amines and carboxylic acids (Odabaşoğlu & Büyükgüngör, 2007a,b,c; 2006a,b; Odabaşoğlu et al., 2003; Yeşilel et al., 2006). The present work is part of a structural study of compounds of organic ammonium systems with hydrogen and halogen-bond donors and we report here the molecular and supramolecular structure of (I) (Fig. 1).

The C2–C7 ring and O1—C1—O2 and O3—C8—O4 planes are approximately coplanar with the dihedral angles between C2–C7 ring and O—C—O planes of 0.96 (2)° and 5.38 (1)°, respectively. The C1—C2 and C8—C7 bonds are approximately equal. This suggests some delocalization between the C2–C7 ring and the –COO- and –COOH groups that form an intramolecular hydrogen bond. Furthermore, these bonds, together with the C8—O3 and C8—O4 lengths indicate delocalization of the negative charge over the O3, C8 and O4 atoms. In the 4,5-dichlorohydrogenphthalate anion, the O1 and O4 distance is 2.3908 (17) Å and this distance is approximately 0.65 Å less than the sum of the van der Waals radii (3.04 Å) due to the presence of a strong intramolecular hydrogen bond in the anion (Table 1). The dihedral angle between the planes of the aromatic rings in the cation and anion is 34.86 (1)°.

Intramolecular O—H···O and C—H···F hydrogen bonds generate edge-fused [S(7)R44(24)S(7)R22(10)S(7)R44(24)S(7)] motifs (Etter, 1990) (Fig. 2). The ions are linked to each other by C—H···O hydrogen bonds chain along the z-axis (Fig. 3). This chain and other hydrogen bonds form [R32(6)R12(4)S(7)R12(4)R44(18)R55(24) R44(18)R12(4)R12(4)S(7)R12(4)R32(6)] motifs (Fig. 4).

Related literature top

For general background, see: Rigby et al. (1986); Buckingham (1993); Mas-Torrent et al. (2003); Setifi et al. (2002); Bryce & Petty (1995); Peng et al. (1998); Rombaut et al. (2001); Bredas et al. (1994); Etter (1990). For related structures, see: Odabaşoğlu & Büyükgüngör (2007a,b,c, 2006a,b); Odabaşoğlu et al. (2003); Yeşilel et al. (2006).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2007c), using 3-(trifluoromethyl)aniline and 4,5-dichlorophthalic acid as starting materials (yield 95%; m.p. 465–466 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol–water (1:1) solution at room temperature.

Refinement top

All H atoms bound to C and N were refined freely with isotropic displacement parameters. The O-bound H atom was was refined using the riding model approximation with d(C—O) = 0.82 and Uiso(H) = 1.5Ueq(O)]

Structure description top

Secondary interactions are proposed to be important in the biological activities of molecules involved in biochemical processes in the living cell. Molecular interactions find their origin in the dispersion, polarization, electrostatic, charge transfer and exchange forces (Rigby et al., 1986; Buckingham, 1993). There is considerable current interest in the preparation of compounds constructed from two molecular networks as they provide a source of novel materials with highly anisotropic electrical, optical and magnetic properties (Mas-Torrent et al., 2003; Setifi et al., 2002; Bryce & Petty, 1995; Peng et al., 1998; Rombaut et al., 2001; Bredas et al., 1994).

We have been interested in hydrogen-bonding systems formed by organic amines and carboxylic acids (Odabaşoğlu & Büyükgüngör, 2007a,b,c; 2006a,b; Odabaşoğlu et al., 2003; Yeşilel et al., 2006). The present work is part of a structural study of compounds of organic ammonium systems with hydrogen and halogen-bond donors and we report here the molecular and supramolecular structure of (I) (Fig. 1).

The C2–C7 ring and O1—C1—O2 and O3—C8—O4 planes are approximately coplanar with the dihedral angles between C2–C7 ring and O—C—O planes of 0.96 (2)° and 5.38 (1)°, respectively. The C1—C2 and C8—C7 bonds are approximately equal. This suggests some delocalization between the C2–C7 ring and the –COO- and –COOH groups that form an intramolecular hydrogen bond. Furthermore, these bonds, together with the C8—O3 and C8—O4 lengths indicate delocalization of the negative charge over the O3, C8 and O4 atoms. In the 4,5-dichlorohydrogenphthalate anion, the O1 and O4 distance is 2.3908 (17) Å and this distance is approximately 0.65 Å less than the sum of the van der Waals radii (3.04 Å) due to the presence of a strong intramolecular hydrogen bond in the anion (Table 1). The dihedral angle between the planes of the aromatic rings in the cation and anion is 34.86 (1)°.

Intramolecular O—H···O and C—H···F hydrogen bonds generate edge-fused [S(7)R44(24)S(7)R22(10)S(7)R44(24)S(7)] motifs (Etter, 1990) (Fig. 2). The ions are linked to each other by C—H···O hydrogen bonds chain along the z-axis (Fig. 3). This chain and other hydrogen bonds form [R32(6)R12(4)S(7)R12(4)R44(18)R55(24) R44(18)R12(4)R12(4)S(7)R12(4)R32(6)] motifs (Fig. 4).

For general background, see: Rigby et al. (1986); Buckingham (1993); Mas-Torrent et al. (2003); Setifi et al. (2002); Bryce & Petty (1995); Peng et al. (1998); Rombaut et al. (2001); Bredas et al. (1994); Etter (1990). For related structures, see: Odabaşoğlu & Büyükgüngör (2007a,b,c, 2006a,b); Odabaşoğlu et al. (2003); Yeşilel et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of S(7)R44(24)S(7)R22(10)S(7)R44(24)S(7) motifs. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, y + 1/2, 1/2 - z; (iii) x, 1 - y, z - 1/2].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the linking of cations and anions by C—H···O hydrogen bonds into chains along the z-axis. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) x, 1/2 - y, 1 - z].
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of [R32(6)R12(4)S(7)R12(4)R44(18)R55(24) R44(18)R12(4)R12(4)S(7)R12(4)R32(6)] motifs. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) -x, y - 1/2, 1/2 - z; (ii) 1 - x, y - 1/2, 1/2 - z; (iii) x, y - 1/2, z - 1/2; (iv) -x, -y, -z].
3-(Trifluoromethyl)anilinium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C7H7F3N+·C8H3Cl2O4F(000) = 800
Mr = 396.14Dx = 1.672 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 28359 reflections
a = 15.0048 (7) Åθ = 2.0–28.0°
b = 14.5270 (9) ŵ = 0.47 mm1
c = 7.3292 (3) ÅT = 296 K
β = 99.887 (4)°Prism, colourless
V = 1573.85 (14) Å30.58 × 0.45 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3740 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2826 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω scansh = 1919
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1919
Tmin = 0.776, Tmax = 0.895l = 99
28359 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1939P]
where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7F3N+·C8H3Cl2O4V = 1573.85 (14) Å3
Mr = 396.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0048 (7) ŵ = 0.47 mm1
b = 14.5270 (9) ÅT = 296 K
c = 7.3292 (3) Å0.58 × 0.45 × 0.25 mm
β = 99.887 (4)°
Data collection top
Stoe IPDS 2
diffractometer
3740 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2826 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.895Rint = 0.032
28359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
3740 reflectionsΔρmin = 0.27 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C81.03044 (10)0.23067 (10)0.5787 (2)0.0418 (3)
C70.93692 (9)0.26142 (9)0.6066 (2)0.0379 (3)
C60.92664 (11)0.35648 (10)0.6057 (2)0.0466 (4)
C50.84683 (11)0.39823 (10)0.6262 (2)0.0492 (4)
C40.77395 (11)0.34493 (11)0.6513 (2)0.0478 (4)
C30.78183 (11)0.25045 (11)0.6524 (2)0.0444 (3)
C20.86192 (9)0.20676 (9)0.6303 (2)0.0378 (3)
C10.85570 (10)0.10270 (10)0.6377 (2)0.0438 (3)
C90.51139 (13)0.12618 (18)0.6703 (3)0.0723 (6)
C100.42647 (11)0.17517 (13)0.5905 (2)0.0517 (4)
C110.42547 (12)0.26998 (14)0.5840 (3)0.0574 (4)
C120.34774 (12)0.31557 (13)0.5041 (3)0.0557 (4)
C130.27120 (11)0.26640 (11)0.4323 (3)0.0475 (4)
C140.27297 (10)0.17171 (10)0.4429 (2)0.0413 (3)
C150.34971 (11)0.12457 (12)0.5200 (2)0.0466 (4)
N10.19072 (9)0.12074 (10)0.3714 (2)0.0460 (3)
O31.08795 (8)0.28955 (8)0.5704 (2)0.0615 (3)
O41.04647 (8)0.14594 (8)0.5608 (2)0.0614 (4)
O20.78483 (8)0.06732 (8)0.6604 (2)0.0600 (3)
O10.92388 (9)0.05241 (8)0.6222 (2)0.0709 (4)
H10.96670.08530.60890.106*
F10.56882 (9)0.17904 (13)0.7817 (3)0.1085 (6)
F20.55617 (10)0.09759 (15)0.5410 (3)0.1219 (7)
F30.49697 (10)0.05389 (11)0.7687 (3)0.1119 (6)
Cl10.84144 (4)0.51638 (3)0.62076 (9)0.0786 (2)
Cl20.67383 (3)0.39467 (4)0.68542 (9)0.07518 (19)
H1A0.1623 (15)0.1449 (15)0.267 (3)0.066 (6)*
H1B0.1476 (16)0.1275 (16)0.451 (3)0.071 (6)*
H1C0.2018 (13)0.0619 (15)0.355 (3)0.057 (5)*
H60.9769 (14)0.3918 (13)0.588 (3)0.056 (5)*
H30.7311 (13)0.2155 (13)0.670 (3)0.055 (5)*
H110.4770 (15)0.3036 (14)0.637 (3)0.063 (6)*
H120.3451 (14)0.3819 (15)0.495 (3)0.068 (6)*
H130.2163 (14)0.2967 (13)0.373 (3)0.060 (5)*
H150.3498 (13)0.0592 (14)0.524 (3)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0378 (7)0.0417 (7)0.0445 (9)0.0005 (6)0.0035 (6)0.0002 (6)
C70.0376 (7)0.0334 (6)0.0406 (8)0.0016 (5)0.0010 (6)0.0012 (6)
C60.0444 (8)0.0349 (7)0.0579 (10)0.0024 (6)0.0014 (7)0.0004 (7)
C50.0525 (9)0.0321 (7)0.0582 (10)0.0059 (6)0.0039 (7)0.0068 (7)
C40.0421 (8)0.0443 (8)0.0538 (10)0.0093 (6)0.0007 (7)0.0096 (7)
C30.0392 (7)0.0417 (8)0.0511 (9)0.0003 (6)0.0042 (6)0.0063 (7)
C20.0376 (7)0.0333 (7)0.0407 (8)0.0010 (5)0.0021 (6)0.0024 (6)
C10.0429 (8)0.0339 (7)0.0535 (9)0.0007 (6)0.0050 (6)0.0018 (6)
C90.0433 (9)0.0919 (16)0.0801 (15)0.0032 (10)0.0062 (9)0.0066 (12)
C100.0404 (8)0.0640 (10)0.0521 (10)0.0006 (7)0.0115 (7)0.0016 (8)
C110.0471 (9)0.0653 (11)0.0615 (12)0.0156 (8)0.0144 (8)0.0071 (9)
C120.0563 (10)0.0439 (9)0.0700 (12)0.0097 (7)0.0196 (9)0.0047 (8)
C130.0458 (8)0.0388 (8)0.0601 (11)0.0005 (6)0.0155 (7)0.0015 (7)
C140.0379 (7)0.0389 (7)0.0493 (9)0.0023 (6)0.0136 (6)0.0007 (6)
C150.0409 (8)0.0442 (8)0.0562 (10)0.0030 (6)0.0127 (7)0.0034 (7)
N10.0370 (7)0.0354 (7)0.0658 (10)0.0003 (5)0.0095 (7)0.0004 (6)
O30.0456 (6)0.0535 (7)0.0879 (10)0.0113 (5)0.0187 (6)0.0086 (6)
O40.0463 (6)0.0402 (6)0.1027 (11)0.0069 (5)0.0264 (7)0.0044 (6)
O20.0459 (6)0.0378 (6)0.0974 (10)0.0050 (5)0.0154 (6)0.0002 (6)
O10.0536 (7)0.0325 (6)0.1329 (13)0.0017 (5)0.0339 (8)0.0008 (7)
F10.0599 (8)0.1288 (13)0.1226 (13)0.0077 (8)0.0243 (8)0.0022 (10)
F20.0727 (9)0.1784 (18)0.1183 (13)0.0540 (10)0.0266 (9)0.0015 (12)
F30.0657 (8)0.1102 (12)0.1504 (15)0.0109 (8)0.0083 (8)0.0569 (11)
Cl10.0804 (3)0.0313 (2)0.1167 (5)0.0096 (2)0.0044 (3)0.0089 (2)
Cl20.0498 (2)0.0661 (3)0.1078 (4)0.0182 (2)0.0082 (2)0.0247 (3)
Geometric parameters (Å, º) top
C8—O31.2239 (19)C9—F11.326 (3)
C8—O41.2653 (19)C9—C101.489 (3)
C8—C71.520 (2)C10—C111.378 (3)
C7—C61.389 (2)C10—C151.389 (2)
C7—C21.412 (2)C11—C121.381 (3)
C6—C51.374 (2)C11—H110.94 (2)
C6—H60.94 (2)C12—C131.378 (2)
C5—C41.378 (2)C12—H120.97 (2)
C5—Cl11.7184 (15)C13—C141.378 (2)
C4—C31.377 (2)C13—H130.97 (2)
C4—Cl21.7235 (16)C14—C151.375 (2)
C3—C21.393 (2)C14—N11.4574 (19)
C3—H30.94 (2)C15—H150.95 (2)
C2—C11.5161 (19)N1—H1A0.88 (2)
C1—O21.2180 (19)N1—H1B0.95 (3)
C1—O11.2781 (19)N1—H1C0.88 (2)
C9—F31.313 (3)O1—H10.8200
C9—F21.319 (3)
O3—C8—O4121.76 (14)F2—C9—C10112.05 (19)
O3—C8—C7118.47 (13)F1—C9—C10112.8 (2)
O4—C8—C7119.75 (13)C11—C10—C15120.84 (16)
C6—C7—C2118.00 (13)C11—C10—C9119.66 (17)
C6—C7—C8113.31 (13)C15—C10—C9119.49 (17)
C2—C7—C8128.69 (12)C10—C11—C12119.82 (16)
C5—C6—C7122.44 (15)C10—C11—H11120.1 (12)
C5—C6—H6120.7 (12)C12—C11—H11120.1 (12)
C7—C6—H6116.9 (12)C13—C12—C11120.08 (17)
C6—C5—C4119.56 (14)C13—C12—H12118.0 (13)
C6—C5—Cl1118.49 (13)C11—C12—H12121.9 (13)
C4—C5—Cl1121.95 (13)C14—C13—C12119.30 (16)
C3—C4—C5119.44 (14)C14—C13—H13119.0 (11)
C3—C4—Cl2119.53 (13)C12—C13—H13121.7 (11)
C5—C4—Cl2121.02 (12)C15—C14—C13121.80 (15)
C4—C3—C2121.88 (15)C15—C14—N1119.50 (14)
C4—C3—H3117.9 (11)C13—C14—N1118.69 (14)
C2—C3—H3120.2 (11)C14—C15—C10118.14 (15)
C3—C2—C7118.67 (13)C14—C15—H15120.5 (12)
C3—C2—C1112.98 (13)C10—C15—H15121.3 (12)
C7—C2—C1128.35 (13)C14—N1—H1A111.4 (14)
O2—C1—O1120.13 (14)C14—N1—H1B110.6 (14)
O2—C1—C2119.09 (14)H1A—N1—H1B102 (2)
O1—C1—C2120.77 (14)C14—N1—H1C111.9 (13)
F3—C9—F2107.2 (2)H1A—N1—H1C110.1 (19)
F3—C9—F1106.0 (2)H1B—N1—H1C110.2 (19)
F2—C9—F1105.51 (19)C1—O1—H1109.5
F3—C9—C10112.80 (17)
O3—C8—C7—C64.5 (2)C3—C2—C1—O20.3 (2)
O4—C8—C7—C6173.96 (15)C7—C2—C1—O2179.50 (16)
O3—C8—C7—C2176.27 (16)C3—C2—C1—O1179.04 (16)
O4—C8—C7—C25.2 (3)C7—C2—C1—O10.2 (3)
C2—C7—C6—C50.2 (3)F3—C9—C10—C11141.3 (2)
C8—C7—C6—C5179.10 (15)F2—C9—C10—C1197.7 (3)
C7—C6—C5—C40.9 (3)F1—C9—C10—C1121.2 (3)
C7—C6—C5—Cl1179.42 (13)F3—C9—C10—C1540.1 (3)
C6—C5—C4—C31.0 (3)F2—C9—C10—C1581.0 (3)
Cl1—C5—C4—C3179.28 (14)F1—C9—C10—C15160.16 (19)
C6—C5—C4—Cl2177.78 (14)C15—C10—C11—C120.9 (3)
Cl1—C5—C4—Cl21.9 (2)C9—C10—C11—C12177.70 (19)
C5—C4—C3—C20.5 (3)C10—C11—C12—C130.5 (3)
Cl2—C4—C3—C2178.33 (13)C11—C12—C13—C140.6 (3)
C4—C3—C2—C70.2 (2)C12—C13—C14—C151.3 (3)
C4—C3—C2—C1179.50 (15)C12—C13—C14—N1178.19 (16)
C6—C7—C2—C30.4 (2)C13—C14—C15—C100.8 (3)
C8—C7—C2—C3179.51 (15)N1—C14—C15—C10178.66 (16)
C6—C7—C2—C1179.54 (15)C11—C10—C15—C140.3 (3)
C8—C7—C2—C11.3 (3)C9—C10—C15—C14178.33 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.88 (2)1.92 (2)2.788 (2)169 (2)
N1—H1B···O3ii0.95 (3)2.72 (2)3.360 (2)125.8 (17)
N1—H1B···O4ii0.95 (3)1.86 (3)2.789 (2)168 (2)
N1—H1C···O2iii0.88 (2)1.89 (2)2.7717 (18)173.2 (19)
N1—H1C···O1iii0.88 (2)2.54 (2)3.0518 (18)117.8 (15)
O1—H1···O40.821.572.3908 (17)174
C3—H3···F10.94 (2)2.75 (2)3.637 (2)157.2 (15)
C15—H15···F2iii0.95 (2)2.76 (2)3.582 (2)144.7 (15)
C13—H13···O3i0.97 (2)2.95 (2)3.571 (2)122.7 (14)
C13—H13···O3ii0.97 (2)2.60 (2)3.107 (2)112.5 (14)
C13—H13···Cl1iv0.97 (2)2.85 (2)3.5693 (17)131.4 (14)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H7F3N+·C8H3Cl2O4
Mr396.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.0048 (7), 14.5270 (9), 7.3292 (3)
β (°) 99.887 (4)
V3)1573.85 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.58 × 0.45 × 0.25
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.776, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
28359, 3740, 2826
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.06
No. of reflections3740
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.88 (2)1.92 (2)2.788 (2)169 (2)
N1—H1B···O3ii0.95 (3)2.72 (2)3.360 (2)125.8 (17)
N1—H1B···O4ii0.95 (3)1.86 (3)2.789 (2)168 (2)
N1—H1C···O2iii0.88 (2)1.89 (2)2.7717 (18)173.2 (19)
N1—H1C···O1iii0.88 (2)2.54 (2)3.0518 (18)117.8 (15)
O1—H1···O40.821.572.3908 (17)173.9
C3—H3···F10.94 (2)2.75 (2)3.637 (2)157.2 (15)
C15—H15···F2iii0.95 (2)2.76 (2)3.582 (2)144.7 (15)
C13—H13···O3i0.97 (2)2.95 (2)3.571 (2)122.7 (14)
C13—H13···O3ii0.97 (2)2.60 (2)3.107 (2)112.5 (14)
C13—H13···Cl1iv0.97 (2)2.85 (2)3.5693 (17)131.4 (14)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds