Download citation
Download citation
link to html
The title compound, [TiCl2(C31H28O4)(C16H16N2)], is a titanium(IV) complex of the bidentate 2,2-dimethyl-α,α,α′,α′-tetra­phenyl-1,3-dioxolane-4,5-dimethano­late (TAD­DOLate) ligand containing also two chloride ions and a bidentate neutral N,N′-dibenzyl­ideneethane-1,2-diamine ligand. The mol­ecular structure has a distorted octa­hedral geometry around the titanium metal center. The Ti—N bond lengths of 2.246 (2) and 2.2476 (17) Å are long, indicating weak bonding between the titanium(IV) metal center and the imine N atoms. Though the two chloride ligands are trans to each other, they bend away from the Ti–TADDOLate bonds with a Cl—Ti—Cl angle of 163.96 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052725/sj2384sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052725/sj2384Isup2.hkl
Contains datablock I

CCDC reference: 667238

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.085
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.02 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.04 Ratio
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.672 1.000 Tmin(prime) and Tmax expected: 0.770 0.926 RR(prime) = 0.808 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.80 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.93 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.70 mm PLAT230_ALERT_2_C Hirshfeld Test Diff for N2 - C41 .. 6.73 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C37 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C44 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C35 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C35 -C40 1.37 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.926 Tmax scaled 0.926 Tmin scaled 0.622 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.03 From the CIF: _reflns_number_total 8479 Count of symmetry unique reflns 4765 Completeness (_total/calc) 177.94% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 3714 Fraction of Friedel pairs measured 0.779 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . R PLAT794_ALERT_5_G Check Predicted Bond Valency for Ti (9) 4.14
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Titanium(IV) complexes of 2,2-dimethyl-α,α,α',α'-tetraaryl-1,3-dioxolane- 4,5-dimethanolates (TADDOLs) have been reported to be excellent catalysts in a variety of asymmetric reactions such as ethylation (Shao & Gau, 1998), arylation (Weber & Seebach, 1994), Diels-Alder (Narasaka et al., 1989), and fluorination reactions (Hintermann & Togni, 2000). In these studies, molecular structures of both four-coordinate Ti(TADDOLate)2 (Seebach et al., 1992) and six-coordinate Ti(TADDOLate)Cl2L2 (Gothelf et al., 1995) complexes were reported. For six-coordinate complexes, the two chloride ligands are invariably trans to each other and L2 could be two neutral monodentate ligands, such as tetrahydrofuran (Shao et al., 2001) or acetonitrile (Hintermann & Togni, 2000). L2 could also be a neutral bidentate like bipyridine or a 1,10-phenathroline. Recently, the molecular structure of an aluminium(III)-TADDOLate complex has been reported (Chen et al., 2007).

The molecular structure of (I) has a distorted octahedral geometry about the titanium(IV) metal center with Ti—O(TADDOLate) bond lengths of 1.7797 (16)and 1.7855 (14) Å which are nearly identical to those in Ti(TADDOLate)Cl2(CH3CN)2 (II) (Hintermann & Togni, 2000) and Ti(TADDOLate)Cl2(bipyridine) (III) (Sheen & Gau, 2004). However, these Ti—O bond lengths are slightly longer than those of 1.752 (5) and 1.765 (5)Å in Ti(TADDOLate)Cl2(MeOCH2CH2OMe) (Hintermann & Togni, 2000). The weakest Ti—N(imine) bonds are trans to the strongest Ti—O bonds (Gau et al., 1996) where the bond lengths are found to be 2.246 (2) and 2.2476 (17) Å. These are slightly shorter than the Ti—N distances to the monodentate CH3CN ligands in (II), 2.264 (4) and 2.283 (4) Å but are somewhat longer than those of 2.229 (5) and 2.232 (5) Å in the bidentate bipyridine complex (III). The N—Ti—N bond angle in the five-membered chelate ring 73.90 (7)° is close to that of 72.0 (2)° in (III). However, this angle is ~10° smaller than the 83.24 (14)° observed in (II) with two monodentate nitrogen donors. In terms of Ti—Cl bond lengths and O—Ti—O angles, relatively small variations are observed in these structures. The Ti—Cl bonds bend away from the Ti—O bonds with a Cl—Ti—Cl angle of 163.96 (3)°.

Related literature top

For general background, see: Chen et al. (2007); Gau et al. (1996); Narasaka et al. (1989); Seebach et al. (1992); Shao & Gau (1998); Weber & Seebach (1994). For related structures, see: Hintermann & Togni (2000); Gothelf et al. (1995); Shao et al. (2001); Sheen & Gau (2004).

Experimental top

To a solution of Ti(TADDOLate)Cl2(AcOEt)2 (1.55 g, 2.00 mmol) (Shao & Gau, 1998) in 5 ml CH2Cl2 at 298 K, N,N'-dibenzylideneethane-1,2-diamine (0.470 g, 2.00 mmol) in 5 ml CH2Cl2 was added. The solution was stirred for 12 h and the sovlent was removed. The resulted yellow solid was dissolved in 5 ml CH2Cl2 followed by a slow addition of 5 ml hexane. The two-layered solution was allowed to stand for 12 h at 298 K to give colorless crystals (0.917 g, 55.0%). 1H NMR (300 MHz, CDCl3): δ9.00 (s, 2H, N=CH), 7.77–7.12 (m, 30H, Ph), 5.60 (s, 2H, OCH), 4.13 (m, 4H, NCH2), 0.56 (s, 6H, CH3) p.p.m.. 13C{1H} NMR (75 MHz, CDCl3): δ166.77, 144.90, 143.70, 131.66, 131.52, 130.33, 129.78, 128.73, 128.18, 127.52, 127.45, 127.32, 127.03, 126.95, 111.35, 99.99, 80.26, 51.70, 27.38 p.p.m..

Refinement top

All H atoms were treated as riding, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Higher Ueq values are observed for C6, C7, C17, C18, C36, C37, C38, C39, C44 and C45 due to vibrations of peripheral methyl or phenyl groups away from the Ti metal center.

Structure description top

Titanium(IV) complexes of 2,2-dimethyl-α,α,α',α'-tetraaryl-1,3-dioxolane- 4,5-dimethanolates (TADDOLs) have been reported to be excellent catalysts in a variety of asymmetric reactions such as ethylation (Shao & Gau, 1998), arylation (Weber & Seebach, 1994), Diels-Alder (Narasaka et al., 1989), and fluorination reactions (Hintermann & Togni, 2000). In these studies, molecular structures of both four-coordinate Ti(TADDOLate)2 (Seebach et al., 1992) and six-coordinate Ti(TADDOLate)Cl2L2 (Gothelf et al., 1995) complexes were reported. For six-coordinate complexes, the two chloride ligands are invariably trans to each other and L2 could be two neutral monodentate ligands, such as tetrahydrofuran (Shao et al., 2001) or acetonitrile (Hintermann & Togni, 2000). L2 could also be a neutral bidentate like bipyridine or a 1,10-phenathroline. Recently, the molecular structure of an aluminium(III)-TADDOLate complex has been reported (Chen et al., 2007).

The molecular structure of (I) has a distorted octahedral geometry about the titanium(IV) metal center with Ti—O(TADDOLate) bond lengths of 1.7797 (16)and 1.7855 (14) Å which are nearly identical to those in Ti(TADDOLate)Cl2(CH3CN)2 (II) (Hintermann & Togni, 2000) and Ti(TADDOLate)Cl2(bipyridine) (III) (Sheen & Gau, 2004). However, these Ti—O bond lengths are slightly longer than those of 1.752 (5) and 1.765 (5)Å in Ti(TADDOLate)Cl2(MeOCH2CH2OMe) (Hintermann & Togni, 2000). The weakest Ti—N(imine) bonds are trans to the strongest Ti—O bonds (Gau et al., 1996) where the bond lengths are found to be 2.246 (2) and 2.2476 (17) Å. These are slightly shorter than the Ti—N distances to the monodentate CH3CN ligands in (II), 2.264 (4) and 2.283 (4) Å but are somewhat longer than those of 2.229 (5) and 2.232 (5) Å in the bidentate bipyridine complex (III). The N—Ti—N bond angle in the five-membered chelate ring 73.90 (7)° is close to that of 72.0 (2)° in (III). However, this angle is ~10° smaller than the 83.24 (14)° observed in (II) with two monodentate nitrogen donors. In terms of Ti—Cl bond lengths and O—Ti—O angles, relatively small variations are observed in these structures. The Ti—Cl bonds bend away from the Ti—O bonds with a Cl—Ti—Cl angle of 163.96 (3)°.

For general background, see: Chen et al. (2007); Gau et al. (1996); Narasaka et al. (1989); Seebach et al. (1992); Shao & Gau (1998); Weber & Seebach (1994). For related structures, see: Hintermann & Togni (2000); Gothelf et al. (1995); Shao et al. (2001); Sheen & Gau (2004).

Computing details top

Data collection: SMART (Siemens 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. All except tertiary H atoms have been omitted for clarity.
Dichlorido(N,N'-dibenzylideneethane-1,2-diamine-κ2N,N')[(2,2- dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanolato)-κ2O,O']titanium(IV) top
Crystal data top
[TiCl2(C31H28O4)(C16H16N2)]F(000) = 1712
Mr = 819.64Dx = 1.256 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7794 reflections
a = 9.9044 (9) Åθ = 2.3–26.0°
b = 18.8261 (17) ŵ = 0.37 mm1
c = 23.238 (2) ÅT = 293 K
V = 4332.9 (7) Å3Block, colorless
Z = 40.70 × 0.59 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
8479 independent reflections
Radiation source: fine-focus sealed tube6464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.672, Tmax = 1.000k = 2323
24512 measured reflectionsl = 2823
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
8479 reflectionsΔρmax = 0.25 e Å3
505 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 3731 Friedel pairs
0 constraintsAbsolute structure parameter: 0.03 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
[TiCl2(C31H28O4)(C16H16N2)]V = 4332.9 (7) Å3
Mr = 819.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9044 (9) ŵ = 0.37 mm1
b = 18.8261 (17) ÅT = 293 K
c = 23.238 (2) Å0.70 × 0.59 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
8479 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6464 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 1.000Rint = 0.042
24512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.25 e Å3
S = 0.95Δρmin = 0.23 e Å3
8479 reflectionsAbsolute structure: Flack (1983), 3731 Friedel pairs
505 parametersAbsolute structure parameter: 0.03 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti0.01130 (4)0.890362 (18)0.017317 (17)0.03442 (10)
Cl10.19289 (6)0.87499 (4)0.03230 (3)0.05223 (17)
Cl20.22879 (6)0.87341 (3)0.05768 (3)0.05237 (17)
O10.04561 (15)0.97815 (7)0.00782 (7)0.0376 (4)
O20.10731 (18)1.13265 (8)0.05941 (7)0.0518 (4)
O30.0431 (2)1.08799 (9)0.14664 (7)0.0556 (5)
O40.06491 (15)0.91234 (8)0.08435 (7)0.0378 (4)
N10.09409 (19)0.83911 (10)0.06252 (9)0.0423 (5)
N20.00005 (18)0.77257 (9)0.03233 (9)0.0390 (4)
C10.0141 (2)1.05209 (10)0.00378 (10)0.0382 (5)
C20.0782 (2)1.05946 (11)0.04940 (10)0.0372 (5)
H2A0.16301.03430.04190.045*
C30.0195 (2)1.03286 (11)0.10639 (10)0.0380 (5)
H3A0.07811.02620.10200.046*
C40.0835 (2)0.96249 (12)0.12945 (10)0.0371 (5)
C50.0873 (4)1.15128 (14)0.11801 (12)0.0625 (8)
C60.2193 (5)1.1747 (2)0.14401 (18)0.1215 (18)
H6A0.28451.13720.14030.182*
H6B0.25121.21620.12430.182*
H6C0.20621.18540.18400.182*
C70.0228 (5)1.20642 (17)0.12197 (15)0.1091 (16)
H7A0.10361.18840.10450.164*
H7B0.04001.21720.16170.164*
H7C0.00531.24880.10230.164*
C80.0567 (3)1.07213 (12)0.06015 (11)0.0445 (6)
C90.0162 (4)1.06813 (15)0.11071 (11)0.0632 (8)
H9A0.10661.05490.10950.076*
C100.0427 (5)1.0834 (2)0.16289 (14)0.0867 (11)
H10A0.00781.08000.19650.104*
C110.1747 (5)1.1035 (2)0.16552 (15)0.0887 (11)
H11A0.21461.11330.20090.106*
C120.2486 (4)1.10906 (18)0.11572 (15)0.0794 (10)
H12A0.33811.12390.11730.095*
C130.1903 (3)1.09274 (14)0.06321 (12)0.0586 (7)
H13A0.24151.09570.02980.070*
C140.1464 (3)1.09407 (12)0.00229 (11)0.0460 (6)
C150.1502 (3)1.16627 (14)0.01034 (14)0.0635 (8)
H15A0.07301.18910.02360.076*
C160.2688 (4)1.20430 (17)0.00315 (17)0.0898 (12)
H16A0.27071.25250.01180.108*
C170.3823 (4)1.1718 (2)0.0165 (2)0.1116 (16)
H17A0.46111.19790.02140.134*
C180.3811 (3)1.10086 (19)0.0291 (2)0.1041 (15)
H18A0.45921.07870.04220.125*
C190.2627 (3)1.06186 (15)0.02209 (16)0.0702 (9)
H19A0.26201.01370.03090.084*
C200.2338 (2)0.97070 (13)0.14184 (11)0.0437 (6)
C210.3293 (3)0.94547 (16)0.10358 (14)0.0606 (8)
H21A0.30180.92280.07000.073*
C220.4658 (3)0.9538 (2)0.11499 (17)0.0855 (11)
H22A0.52960.93610.08930.103*
C230.5063 (4)0.9878 (2)0.16382 (19)0.0984 (13)
H23A0.59790.99360.17110.118*
C240.4135 (4)1.0133 (2)0.20214 (17)0.0826 (11)
H24A0.44181.03710.23510.099*
C250.2781 (3)1.00354 (17)0.19176 (13)0.0613 (8)
H25A0.21521.01920.21860.074*
C260.0096 (3)0.93361 (12)0.18191 (10)0.0430 (6)
C270.1065 (3)0.96223 (18)0.20453 (13)0.0652 (8)
H27A0.14211.00350.18870.078*
C280.1710 (4)0.9303 (2)0.25059 (16)0.0865 (11)
H28A0.24830.95090.26590.104*
C290.1224 (4)0.8686 (2)0.27395 (16)0.0933 (12)
H29A0.16820.84620.30380.112*
C300.0059 (4)0.84082 (18)0.25278 (15)0.0860 (10)
H30A0.02980.79980.26910.103*
C310.0595 (3)0.87281 (16)0.20752 (13)0.0633 (8)
H31A0.13930.85300.19380.076*
C320.1284 (3)0.76385 (13)0.05528 (13)0.0516 (7)
H32A0.21640.75950.03730.062*
H32B0.13210.74080.09260.062*
C330.0228 (2)0.72842 (11)0.01819 (11)0.0456 (6)
H33A0.06050.72300.03970.055*
H33B0.05360.68170.00660.055*
C340.0898 (3)0.86842 (14)0.11157 (12)0.0544 (7)
H34A0.07540.91720.11090.065*
C350.1041 (3)0.83741 (17)0.16978 (13)0.0639 (8)
C360.0207 (5)0.7833 (2)0.18752 (18)0.1132 (15)
H36A0.04160.76350.16230.136*
C370.0307 (7)0.7587 (3)0.2438 (2)0.149 (2)
H37A0.02690.72300.25640.179*
C380.1227 (8)0.7859 (3)0.2800 (2)0.145 (2)
H38A0.13030.76790.31710.174*
C390.2044 (7)0.8395 (3)0.2628 (2)0.1272 (18)
H39A0.26780.85860.28790.153*
C400.1926 (5)0.8654 (2)0.20779 (15)0.0912 (12)
H40A0.24690.90320.19640.109*
C410.0077 (3)0.74781 (12)0.08336 (12)0.0497 (6)
H41A0.01800.78210.11180.060*
C420.0030 (3)0.67446 (13)0.10504 (12)0.0559 (7)
C430.0597 (5)0.6663 (2)0.15814 (16)0.0970 (12)
H43A0.09240.70600.17750.116*
C440.0734 (6)0.6011 (3)0.1818 (2)0.1319 (19)
H44A0.11470.59640.21760.158*
C450.0277 (6)0.5429 (2)0.1541 (2)0.1213 (18)
H45A0.04160.49810.17000.146*
C460.0396 (4)0.54923 (17)0.10223 (18)0.0899 (12)
H46A0.07400.50910.08410.108*
C470.0557 (3)0.61513 (14)0.07746 (13)0.0614 (7)
H47A0.10130.61990.04270.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.0350 (2)0.02628 (18)0.0420 (2)0.00081 (16)0.00169 (19)0.00011 (18)
Cl10.0408 (3)0.0585 (4)0.0573 (4)0.0036 (3)0.0117 (3)0.0018 (3)
Cl20.0378 (3)0.0460 (3)0.0734 (5)0.0010 (3)0.0125 (3)0.0005 (3)
O10.0435 (8)0.0278 (7)0.0415 (9)0.0019 (6)0.0009 (7)0.0017 (7)
O20.0807 (12)0.0317 (9)0.0430 (10)0.0127 (8)0.0082 (9)0.0038 (8)
O30.0897 (14)0.0405 (9)0.0366 (9)0.0029 (9)0.0097 (10)0.0058 (8)
O40.0397 (8)0.0322 (8)0.0414 (9)0.0012 (6)0.0002 (7)0.0008 (7)
N10.0446 (11)0.0327 (10)0.0495 (13)0.0039 (8)0.0038 (10)0.0033 (10)
N20.0373 (10)0.0319 (9)0.0477 (12)0.0014 (9)0.0028 (10)0.0020 (8)
C10.0501 (13)0.0247 (10)0.0398 (13)0.0003 (10)0.0036 (12)0.0011 (9)
C20.0463 (13)0.0255 (11)0.0396 (14)0.0036 (10)0.0077 (11)0.0001 (10)
C30.0454 (14)0.0331 (11)0.0355 (13)0.0031 (10)0.0037 (12)0.0016 (9)
C40.0404 (13)0.0362 (12)0.0348 (13)0.0003 (10)0.0023 (11)0.0027 (10)
C50.110 (2)0.0364 (15)0.0408 (16)0.0089 (15)0.0019 (16)0.0042 (13)
C60.183 (4)0.102 (3)0.080 (3)0.080 (3)0.048 (3)0.017 (2)
C70.205 (5)0.0591 (19)0.063 (2)0.045 (3)0.028 (3)0.0087 (16)
C80.0658 (17)0.0300 (12)0.0376 (14)0.0014 (11)0.0076 (13)0.0013 (11)
C90.084 (2)0.0637 (17)0.0421 (16)0.0067 (17)0.0015 (17)0.0005 (13)
C100.122 (3)0.097 (3)0.0403 (18)0.005 (2)0.003 (2)0.0060 (17)
C110.131 (3)0.085 (3)0.050 (2)0.001 (2)0.035 (2)0.0054 (19)
C120.090 (2)0.080 (2)0.068 (2)0.0131 (19)0.033 (2)0.008 (2)
C130.0700 (19)0.0585 (17)0.0475 (17)0.0083 (14)0.0117 (15)0.0039 (14)
C140.0562 (15)0.0346 (13)0.0471 (15)0.0092 (11)0.0033 (12)0.0060 (11)
C150.085 (2)0.0376 (14)0.068 (2)0.0114 (13)0.0020 (17)0.0054 (14)
C160.115 (3)0.0517 (19)0.103 (3)0.040 (2)0.006 (3)0.0117 (19)
C170.096 (3)0.088 (3)0.151 (4)0.059 (2)0.024 (3)0.021 (3)
C180.068 (2)0.082 (2)0.162 (4)0.0383 (18)0.029 (2)0.038 (3)
C190.0597 (17)0.0520 (16)0.099 (3)0.0181 (14)0.0094 (19)0.0205 (18)
C200.0413 (13)0.0447 (14)0.0451 (16)0.0037 (11)0.0010 (12)0.0046 (12)
C210.0425 (15)0.074 (2)0.065 (2)0.0023 (14)0.0021 (15)0.0006 (16)
C220.0391 (18)0.122 (3)0.095 (3)0.0071 (17)0.0012 (18)0.002 (2)
C230.0468 (19)0.141 (4)0.108 (3)0.020 (2)0.023 (2)0.022 (3)
C240.070 (2)0.102 (3)0.075 (2)0.020 (2)0.028 (2)0.002 (2)
C250.0572 (18)0.077 (2)0.0495 (17)0.0089 (15)0.0052 (15)0.0011 (16)
C260.0468 (14)0.0466 (13)0.0357 (13)0.0078 (12)0.0028 (13)0.0047 (11)
C270.0593 (18)0.079 (2)0.0575 (19)0.0028 (16)0.0138 (16)0.0208 (17)
C280.069 (2)0.116 (3)0.074 (2)0.006 (2)0.0251 (19)0.027 (2)
C290.107 (3)0.108 (3)0.065 (2)0.031 (3)0.016 (2)0.031 (2)
C300.108 (3)0.080 (2)0.070 (2)0.008 (2)0.002 (2)0.0425 (19)
C310.0731 (19)0.0586 (18)0.0583 (18)0.0017 (15)0.0010 (15)0.0180 (15)
C320.0552 (15)0.0364 (13)0.0631 (18)0.0042 (11)0.0051 (14)0.0063 (13)
C330.0485 (14)0.0309 (11)0.0573 (16)0.0029 (10)0.0022 (14)0.0023 (11)
C340.0719 (18)0.0418 (14)0.0494 (16)0.0023 (13)0.0019 (14)0.0019 (13)
C350.087 (2)0.0554 (17)0.0497 (18)0.0106 (16)0.0036 (17)0.0048 (15)
C360.134 (4)0.121 (3)0.085 (3)0.029 (3)0.002 (3)0.040 (3)
C370.206 (6)0.146 (5)0.095 (4)0.036 (5)0.007 (4)0.054 (4)
C380.238 (7)0.130 (5)0.067 (3)0.032 (5)0.002 (4)0.037 (3)
C390.210 (6)0.107 (3)0.065 (3)0.014 (4)0.040 (3)0.005 (3)
C400.139 (3)0.077 (2)0.057 (2)0.001 (2)0.022 (2)0.0007 (19)
C410.0539 (16)0.0373 (13)0.0578 (17)0.0028 (12)0.0058 (15)0.0011 (12)
C420.0623 (16)0.0463 (14)0.0591 (17)0.0063 (14)0.0016 (16)0.0147 (13)
C430.143 (3)0.071 (2)0.077 (3)0.012 (2)0.027 (3)0.018 (2)
C440.199 (5)0.103 (4)0.094 (3)0.045 (4)0.035 (3)0.037 (3)
C450.185 (5)0.071 (3)0.108 (4)0.049 (3)0.017 (4)0.043 (3)
C460.123 (3)0.0464 (18)0.101 (3)0.0019 (19)0.036 (3)0.0079 (19)
C470.0687 (17)0.0444 (15)0.0712 (19)0.0004 (14)0.0115 (15)0.0087 (15)
Geometric parameters (Å, º) top
Ti—O41.7797 (16)C19—H19A0.9300
Ti—O11.7855 (14)C20—C211.382 (4)
Ti—N12.246 (2)C20—C251.386 (4)
Ti—N22.2476 (17)C21—C221.387 (4)
Ti—Cl12.3459 (7)C21—H21A0.9300
Ti—Cl22.3710 (7)C22—C231.363 (5)
O1—C11.430 (2)C22—H22A0.9300
O2—C51.420 (3)C23—C241.367 (5)
O2—C21.427 (3)C23—H23A0.9300
O3—C31.417 (3)C24—C251.375 (5)
O3—C51.433 (3)C24—H24A0.9300
O4—C41.422 (3)C25—H25A0.9300
N1—C341.267 (3)C26—C271.374 (4)
N1—C321.467 (3)C26—C311.382 (4)
N2—C411.276 (3)C27—C281.384 (4)
N2—C331.456 (3)C27—H27A0.9300
C1—C81.533 (3)C28—C291.368 (5)
C1—C141.537 (3)C28—H28A0.9300
C1—C21.543 (3)C29—C301.359 (5)
C2—C31.531 (3)C29—H29A0.9300
C2—H2A0.9800C30—C311.374 (4)
C3—C41.563 (3)C30—H30A0.9300
C3—H3A0.9800C31—H31A0.9300
C4—C261.522 (3)C32—C331.510 (3)
C4—C201.525 (3)C32—H32A0.9700
C5—C61.505 (5)C32—H32B0.9700
C5—C71.508 (5)C33—H33A0.9700
C6—H6A0.9600C33—H33B0.9700
C6—H6B0.9600C34—C351.480 (4)
C6—H6C0.9600C34—H34A0.9300
C7—H7A0.9600C35—C401.351 (5)
C7—H7B0.9600C35—C361.374 (5)
C7—H7C0.9600C36—C371.390 (6)
C8—C131.381 (4)C36—H36A0.9300
C8—C91.381 (4)C37—C381.341 (7)
C9—C101.376 (4)C37—H37A0.9300
C9—H9A0.9300C38—C391.354 (8)
C10—C111.362 (5)C38—H38A0.9300
C10—H10A0.9300C39—C401.372 (6)
C11—C121.373 (5)C39—H39A0.9300
C11—H11A0.9300C40—H40A0.9300
C12—C131.384 (4)C41—C421.471 (3)
C12—H12A0.9300C41—H41A0.9300
C13—H13A0.9300C42—C471.390 (4)
C14—C191.381 (4)C42—C431.390 (4)
C14—C151.391 (4)C43—C441.352 (5)
C15—C161.386 (4)C43—H43A0.9300
C15—H15A0.9300C44—C451.351 (6)
C16—C171.359 (5)C44—H44A0.9300
C16—H16A0.9300C45—C461.382 (6)
C17—C181.367 (5)C45—H45A0.9300
C17—H17A0.9300C46—C471.377 (4)
C18—C191.393 (4)C46—H46A0.9300
C18—H18A0.9300C47—H47A0.9300
O4—Ti—O198.73 (7)C17—C18—C19119.8 (3)
O4—Ti—N1167.86 (7)C17—C18—H18A120.1
O1—Ti—N193.32 (7)C19—C18—H18A120.1
O4—Ti—N294.15 (7)C14—C19—C18120.7 (3)
O1—Ti—N2166.79 (7)C14—C19—H19A119.7
N1—Ti—N273.90 (7)C18—C19—H19A119.7
O4—Ti—Cl195.35 (6)C21—C20—C25118.4 (2)
O1—Ti—Cl196.75 (5)C21—C20—C4120.8 (2)
N1—Ti—Cl181.71 (5)C25—C20—C4120.8 (2)
N2—Ti—Cl184.92 (5)C20—C21—C22120.4 (3)
O4—Ti—Cl294.04 (6)C20—C21—H21A119.8
O1—Ti—Cl294.65 (5)C22—C21—H21A119.8
N1—Ti—Cl286.40 (6)C23—C22—C21119.9 (4)
N2—Ti—Cl281.44 (5)C23—C22—H22A120.0
Cl1—Ti—Cl2163.96 (3)C21—C22—H22A120.0
C1—O1—Ti146.95 (14)C22—C23—C24120.6 (3)
C5—O2—C2111.52 (18)C22—C23—H23A119.7
C3—O3—C5110.67 (17)C24—C23—H23A119.7
C4—O4—Ti148.64 (14)C23—C24—C25119.6 (3)
C34—N1—C32122.1 (2)C23—C24—H24A120.2
C34—N1—Ti122.94 (17)C25—C24—H24A120.2
C32—N1—Ti113.87 (17)C24—C25—C20121.0 (3)
C41—N2—C33123.35 (19)C24—C25—H25A119.5
C41—N2—Ti120.50 (16)C20—C25—H25A119.5
C33—N2—Ti115.48 (14)C27—C26—C31117.4 (2)
O1—C1—C8106.47 (17)C27—C26—C4124.6 (2)
O1—C1—C14108.70 (18)C31—C26—C4117.9 (2)
C8—C1—C14109.99 (19)C26—C27—C28120.7 (3)
O1—C1—C2105.63 (16)C26—C27—H27A119.6
C8—C1—C2113.03 (19)C28—C27—H27A119.6
C14—C1—C2112.66 (19)C29—C28—C27120.9 (4)
O2—C2—C3104.57 (18)C29—C28—H28A119.6
O2—C2—C1109.70 (18)C27—C28—H28A119.6
C3—C2—C1116.00 (19)C30—C29—C28118.8 (3)
O2—C2—H2A108.8C30—C29—H29A120.6
C3—C2—H2A108.8C28—C29—H29A120.6
C1—C2—H2A108.8C29—C30—C31120.6 (3)
O3—C3—C2105.59 (17)C29—C30—H30A119.7
O3—C3—C4109.11 (18)C31—C30—H30A119.7
C2—C3—C4114.82 (18)C30—C31—C26121.6 (3)
O3—C3—H3A109.1C30—C31—H31A119.2
C2—C3—H3A109.1C26—C31—H31A119.2
C4—C3—H3A109.1N1—C32—C33109.4 (2)
O4—C4—C26106.91 (18)N1—C32—H32A109.8
O4—C4—C20109.42 (19)C33—C32—H32A109.8
C26—C4—C20110.8 (2)N1—C32—H32B109.8
O4—C4—C3104.92 (17)C33—C32—H32B109.8
C26—C4—C3112.47 (19)H32A—C32—H32B108.2
C20—C4—C3112.02 (19)N2—C33—C32108.40 (18)
O2—C5—O3106.40 (19)N2—C33—H33A110.0
O2—C5—C6109.6 (3)C32—C33—H33A110.0
O3—C5—C6108.8 (3)N2—C33—H33B110.0
O2—C5—C7109.2 (3)C32—C33—H33B110.0
O3—C5—C7108.9 (3)H33A—C33—H33B108.4
C6—C5—C7113.7 (3)N1—C34—C35130.3 (3)
C5—C6—H6A109.5N1—C34—H34A114.8
C5—C6—H6B109.5C35—C34—H34A114.8
H6A—C6—H6B109.5C40—C35—C36118.9 (3)
C5—C6—H6C109.5C40—C35—C34120.4 (3)
H6A—C6—H6C109.5C36—C35—C34120.6 (3)
H6B—C6—H6C109.5C35—C36—C37119.1 (5)
C5—C7—H7A109.5C35—C36—H36A120.5
C5—C7—H7B109.5C37—C36—H36A120.5
H7A—C7—H7B109.5C38—C37—C36120.7 (5)
C5—C7—H7C109.5C38—C37—H37A119.6
H7A—C7—H7C109.5C36—C37—H37A119.6
H7B—C7—H7C109.5C37—C38—C39120.4 (5)
C13—C8—C9118.2 (3)C37—C38—H38A119.8
C13—C8—C1123.5 (2)C39—C38—H38A119.8
C9—C8—C1118.3 (2)C38—C39—C40119.2 (5)
C10—C9—C8121.1 (3)C38—C39—H39A120.4
C10—C9—H9A119.4C40—C39—H39A120.4
C8—C9—H9A119.4C35—C40—C39121.7 (4)
C11—C10—C9120.3 (4)C35—C40—H40A119.1
C11—C10—H10A119.9C39—C40—H40A119.1
C9—C10—H10A119.9N2—C41—C42131.2 (2)
C10—C11—C12119.7 (3)N2—C41—H41A114.4
C10—C11—H11A120.2C42—C41—H41A114.4
C12—C11—H11A120.2C47—C42—C43119.3 (3)
C11—C12—C13120.3 (3)C47—C42—C41125.8 (3)
C11—C12—H12A119.9C43—C42—C41114.9 (3)
C13—C12—H12A119.9C44—C43—C42120.4 (4)
C8—C13—C12120.5 (3)C44—C43—H43A119.8
C8—C13—H13A119.8C42—C43—H43A119.8
C12—C13—H13A119.8C45—C44—C43120.6 (4)
C19—C14—C15118.5 (2)C45—C44—H44A119.7
C19—C14—C1121.1 (2)C43—C44—H44A119.7
C15—C14—C1120.4 (2)C44—C45—C46120.5 (3)
C16—C15—C14120.2 (3)C44—C45—H45A119.8
C16—C15—H15A119.9C46—C45—H45A119.8
C14—C15—H15A119.9C47—C46—C45119.9 (4)
C17—C16—C15120.6 (3)C47—C46—H46A120.1
C17—C16—H16A119.7C45—C46—H46A120.1
C15—C16—H16A119.7C46—C47—C42119.2 (3)
C16—C17—C18120.4 (3)C46—C47—H47A120.4
C16—C17—H17A119.8C42—C47—H47A120.4
C18—C17—H17A119.8

Experimental details

Crystal data
Chemical formula[TiCl2(C31H28O4)(C16H16N2)]
Mr819.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.9044 (9), 18.8261 (17), 23.238 (2)
V3)4332.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.70 × 0.59 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.672, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24512, 8479, 6464
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 0.95
No. of reflections8479
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23
Absolute structureFlack (1983), 3731 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: SMART (Siemens 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Ti—O41.7797 (16)Ti—N22.2476 (17)
Ti—O11.7855 (14)Ti—Cl12.3459 (7)
Ti—N12.246 (2)Ti—Cl22.3710 (7)
O4—Ti—O198.73 (7)Cl1—Ti—Cl2163.96 (3)
N1—Ti—N273.90 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds