Download citation
Download citation
link to html
In the title complex, [Zn(C7H4NO3S)2(C8H22N4)]·H2O or [Zn(sac)2(paen)]·H2O [sac = saccharinate and paen = N,N′-bis­(3-amino­prop­yl)ethyl­enediamine], the zinc cation is octa­hedrally coordinated. The equatorial plane of the octa­hedron is formed by N atoms of the paen ligand, whereas the axial positions are occupied by the carbonyl O atoms of the two sac ligands. One of the sulfonyl groups of the sac ligands shows disorder and was modelled with two different orientations and site occupancies of 0:38 (1):0.62 (1). The mol­ecular packing is stabilized by inter­molecular O—H...O and N—H...O hydrogen bonds between water mol­ecules and neighbouring [Zn(sac)2(paen)] mol­ecules, which form chains running parallel to [010]. The crystal used was an inversion twin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049458/wm2151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049458/wm2151Isup2.hkl
Contains datablock I

CCDC reference: 667146

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in main residue
  • R factor = 0.068
  • wR factor = 0.122
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.147 STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.449 From the CIF: _refine_ls_abs_structure_Flack_su 0.017 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.15 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT033_ALERT_2_C Flack Parameter Value Deviates 2 * su from zero. 0.45 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S1B PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT301_ALERT_3_C Main Residue Disorder ......................... 7.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT352_ALERT_3_C Short N-H Bond (0.87A) N4 - H4A ... 0.76 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C1 - C6 ... 1.37 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C5 - C6 ... 1.37 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.54 From the CIF: _reflns_number_total 6894 Count of symmetry unique reflns 3969 Completeness (_total/calc) 173.70% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2925 Fraction of Friedel pairs measured 0.737 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of N4 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of N5 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 29
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In title compound the Zn(II) cation is octahedrally coordinated by two sac and one paen ligands. Most interestingly, the two sac ligands are bonded to the Zn site via the carbonyl O atoms although N-coordination is usually preferred by this ligand with first-row transition metals. The equatorial plane, defined by the atoms (N3, N4, N5, N6), of the octahedron is formed by N atoms of paen ligands, whereas the axial positions belong to the carbonyl O atoms of the sac ligands. The Zn—N bonds are slightly shorter than the Zn—O bonds (Table 1). Whereas the (O–Zn–O) angle is nearly linear, the trans- (N–Zn–N) angles of the equatorial plane deviate significantly from linearity. One of the sulfonyl groups of the sac ligands shows disorder, and was refined with two different orientations (see Fig. 1). However, the bond lengths and angles of the sac ligands are similiar to those observed in related structures (Yeşilel et al., 2006; Yilmaz et al., 2002; 2006).

The molecular packing is stabilized by intermolecular hydrogen bonds (Table2, Fig. 2). Neighbouring Zn(sac)2(paen) moieties are linked via water molecules through O—H···O and N—H···O hydrogen bonds, which leads to chains extending parallel to (010).

Related literature top

For synthesis of [Zn(sac)2(H2O)4].2H2O used as an educt for crystal growth of the title compound, see: Koksal et al. (2001). For related structures containing sac ligands, see: Yeşilel et al., 2006; Yilmaz et al., 2002; 2006.

Experimental top

Under continous stirring at room temperature, an aqueous solution of paen (350 mg, 2.0 mmol) was added dropwise to 50 ml of an aqueous solution of [Zn(sac)2(H2O)4].2H2O (548 mg, 1.0 mmol). For synthesis of the latter compound, see: Koksal et al. (2001). The resulting solution was heated up to 353 K and stirred continuously for 4 h. Then the solution was allowed to cool to room temperature slowly. Small colourless crystals grown in the solution were filtered off and washed with cold distilled water and ethanol, and were finally dried.

Refinement top

The disordered sulfonyl group of the sacharinate ligand was modelled with two different orientations (S1A—S1B; O3A—O3B, O4A—O4B) and with refined occupancy factors of 0.383 (11) and 0.617 (11), respectively. All H atoms except those bonded to N4 and N5 atoms were placed in geometrically idealized positions with distances of d(N–H) = 0.90 Å; d(C–H) = 0.93 - 0.97 Å, and were refined as riding atoms with Uiso(H) = 1.2Ueq of the parent atoms. H atoms bonded to N4 and N5 were found from difference maps and were refined freely. H atoms of the water molecule were constrained to O—H distances of 0.85 (2) Å and were refined with Uiso(H) = 1.2Ueq(OW). The measured crystal was racemically twinned with an approximate twin ratio of 1:1.

Structure description top

In title compound the Zn(II) cation is octahedrally coordinated by two sac and one paen ligands. Most interestingly, the two sac ligands are bonded to the Zn site via the carbonyl O atoms although N-coordination is usually preferred by this ligand with first-row transition metals. The equatorial plane, defined by the atoms (N3, N4, N5, N6), of the octahedron is formed by N atoms of paen ligands, whereas the axial positions belong to the carbonyl O atoms of the sac ligands. The Zn—N bonds are slightly shorter than the Zn—O bonds (Table 1). Whereas the (O–Zn–O) angle is nearly linear, the trans- (N–Zn–N) angles of the equatorial plane deviate significantly from linearity. One of the sulfonyl groups of the sac ligands shows disorder, and was refined with two different orientations (see Fig. 1). However, the bond lengths and angles of the sac ligands are similiar to those observed in related structures (Yeşilel et al., 2006; Yilmaz et al., 2002; 2006).

The molecular packing is stabilized by intermolecular hydrogen bonds (Table2, Fig. 2). Neighbouring Zn(sac)2(paen) moieties are linked via water molecules through O—H···O and N—H···O hydrogen bonds, which leads to chains extending parallel to (010).

For synthesis of [Zn(sac)2(H2O)4].2H2O used as an educt for crystal growth of the title compound, see: Koksal et al. (2001). For related structures containing sac ligands, see: Yeşilel et al., 2006; Yilmaz et al., 2002; 2006.

Computing details top

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-RED32 (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and displacement ellipsoids displayed at the 30% probability level. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of the title compound showing the chain structure parallel to (010). Benzene rings and some hydrogen bonds have been omitted for clarity.
[N,N'-Bis(3-aminopropyl)ethylendiamine]disaccharinatozinc(II) monohydrate top
Crystal data top
[Zn(C7H4NO3S)2(C8H22N4)]·H2OF(000) = 1296
Mr = 622.03Dx = 1.485 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 23038 reflections
a = 10.1025 (5) Åθ = 1.4–26.6°
b = 14.3045 (10) ŵ = 1.08 mm1
c = 19.2547 (11) ÅT = 296 K
V = 2782.5 (3) Å3Rectangular prism, colorless
Z = 40.32 × 0.30 × 0.25 mm
Data collection top
Stoe IPDSII
diffractometer
6894 independent reflections
Radiation source: fine-focus sealed tube3763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.148
ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: numerical
(X-RED32; Stoe, 2002)
h = 1213
Tmin = 0.710, Tmax = 0.811k = 1918
49189 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.001
S = 0.92Δρmax = 0.37 e Å3
6894 reflectionsΔρmin = 0.36 e Å3
381 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 restraintsExtinction coefficient: 0.0015 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3014 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.449 (17)
Crystal data top
[Zn(C7H4NO3S)2(C8H22N4)]·H2OV = 2782.5 (3) Å3
Mr = 622.03Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1025 (5) ŵ = 1.08 mm1
b = 14.3045 (10) ÅT = 296 K
c = 19.2547 (11) Å0.32 × 0.30 × 0.25 mm
Data collection top
Stoe IPDSII
diffractometer
6894 independent reflections
Absorption correction: numerical
(X-RED32; Stoe, 2002)
3763 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.811Rint = 0.148
49189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.37 e Å3
S = 0.92Δρmin = 0.36 e Å3
6894 reflectionsAbsolute structure: Flack (1983), 3014 Friedel pairs
381 parametersAbsolute structure parameter: 0.449 (17)
29 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1672 (4)0.4017 (3)0.1425 (2)0.0451 (10)
C20.1978 (5)0.3115 (3)0.1605 (3)0.0590 (13)
H20.27500.28300.14490.071*
C30.1087 (6)0.2641 (4)0.2031 (3)0.0728 (15)
H30.12780.20350.21750.087*
C40.0065 (6)0.3058 (4)0.2241 (3)0.0749 (15)
H40.06620.27170.25070.090*
C50.0361 (6)0.3954 (4)0.2072 (3)0.0755 (17)
H50.11270.42430.22320.091*
C60.0520 (5)0.4412 (4)0.1656 (3)0.0624 (14)
C70.2450 (5)0.4672 (3)0.0984 (3)0.0608 (13)
C80.8111 (4)0.6093 (3)0.1499 (2)0.0429 (10)
C90.7907 (5)0.7016 (3)0.1649 (3)0.0526 (12)
H90.72080.73450.14510.063*
C100.8768 (6)0.7441 (4)0.2101 (3)0.0694 (15)
H100.86490.80680.22120.083*
C110.9808 (7)0.6953 (4)0.2394 (3)0.0725 (16)
H111.03720.72550.27030.087*
C121.0022 (6)0.6024 (4)0.2234 (3)0.0682 (13)
H121.07240.56910.24240.082*
C130.9140 (4)0.5615 (3)0.1776 (2)0.0501 (11)
C140.7301 (4)0.5471 (3)0.1025 (2)0.0468 (10)
C150.4820 (6)0.2962 (3)0.0276 (3)0.0731 (15)
H15A0.47100.24540.06050.088*
H15B0.40960.29310.00540.088*
C160.6118 (6)0.2837 (4)0.0107 (3)0.0718 (15)
H16A0.61820.21910.02570.086*
H16B0.68370.29500.02160.086*
C170.6310 (6)0.3457 (4)0.0730 (3)0.0771 (17)
H17A0.55500.33930.10340.093*
H17B0.70830.32460.09850.093*
C180.3549 (6)0.3961 (4)0.1050 (4)0.0820 (17)
H18A0.27960.37850.07660.098*
H18B0.35760.35470.14490.098*
C190.3383 (6)0.4956 (4)0.1292 (3)0.0810 (16)
H19A0.41180.51280.15900.097*
H19B0.25720.50140.15590.097*
C200.3312 (6)0.6581 (4)0.0891 (3)0.0747 (16)
H20A0.25140.67050.11550.090*
H20B0.40650.67100.11880.090*
C210.3355 (6)0.7216 (4)0.0276 (4)0.084 (2)
H21A0.26420.70400.00350.101*
H21B0.31750.78470.04350.101*
C220.4633 (6)0.7233 (3)0.0139 (3)0.0760 (18)
H22A0.53750.73100.01760.091*
H22B0.46230.77650.04510.091*
N10.1887 (5)0.5510 (3)0.0913 (3)0.0946 (19)
N20.7764 (4)0.4591 (3)0.0980 (2)0.0628 (12)
N30.4813 (5)0.6373 (3)0.0542 (2)0.0702 (12)
H3A0.41400.63310.08470.084*
H3B0.55630.64320.07910.084*
N40.4754 (5)0.3859 (3)0.0651 (3)0.0616 (12)
N50.3334 (4)0.5583 (3)0.0687 (3)0.0658 (12)
N60.6482 (4)0.4462 (3)0.0551 (2)0.0693 (12)
H6A0.72270.45190.02980.083*
H6B0.66060.47820.09480.083*
O10.3520 (4)0.4442 (3)0.0723 (2)0.0758 (11)
O20.6306 (3)0.5774 (2)0.07302 (19)0.0600 (9)
O1W0.8016 (5)0.3978 (5)0.3387 (3)0.1273 (19)
O3A0.107 (2)0.6125 (9)0.2157 (8)0.101 (5)0.383 (11)
O3B0.0292 (14)0.6268 (5)0.1665 (10)0.130 (6)0.617 (11)
O4A0.0316 (15)0.5925 (16)0.1166 (15)0.115 (4)0.383 (11)
O4B0.0713 (8)0.5555 (7)0.0682 (7)0.115 (4)0.617 (11)
O50.8858 (5)0.3817 (3)0.1988 (2)0.1005 (16)
O61.0226 (4)0.4277 (3)0.1006 (2)0.1084 (17)
S1A0.0774 (9)0.5583 (5)0.1553 (5)0.079 (3)0.383 (11)
S1B0.0367 (4)0.5542 (3)0.1183 (3)0.0725 (14)0.617 (11)
S20.90760 (14)0.44672 (10)0.14354 (8)0.0665 (4)
Zn10.49146 (5)0.51064 (3)0.00068 (4)0.05359 (16)
H5A0.252 (6)0.548 (4)0.040 (3)0.082 (16)*
H4A0.548 (7)0.393 (5)0.073 (4)0.10 (3)*
H1W0.816 (7)0.405 (7)0.2951 (15)0.154*
H2W0.720 (2)0.405 (7)0.341 (4)0.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (3)0.044 (2)0.042 (2)0.0024 (19)0.009 (2)0.0002 (19)
C20.055 (3)0.062 (3)0.060 (3)0.005 (2)0.001 (3)0.008 (2)
C30.077 (4)0.067 (3)0.075 (4)0.002 (3)0.004 (3)0.019 (3)
C40.074 (4)0.082 (4)0.068 (3)0.021 (4)0.019 (3)0.007 (3)
C50.072 (4)0.070 (3)0.084 (4)0.015 (3)0.038 (3)0.005 (3)
C60.063 (3)0.057 (3)0.067 (3)0.003 (2)0.037 (3)0.001 (3)
C70.053 (3)0.059 (3)0.070 (3)0.002 (2)0.022 (2)0.008 (3)
C80.037 (2)0.047 (2)0.045 (3)0.0072 (19)0.0025 (19)0.001 (2)
C90.061 (3)0.042 (2)0.054 (3)0.003 (2)0.002 (2)0.004 (2)
C100.089 (4)0.052 (3)0.068 (4)0.014 (3)0.008 (3)0.016 (3)
C110.084 (4)0.077 (3)0.056 (3)0.021 (3)0.018 (3)0.013 (2)
C120.055 (3)0.081 (3)0.068 (3)0.003 (3)0.016 (3)0.007 (3)
C130.047 (3)0.059 (3)0.045 (2)0.000 (2)0.015 (2)0.005 (2)
C140.033 (2)0.055 (3)0.052 (3)0.003 (2)0.0064 (19)0.003 (2)
C150.063 (4)0.058 (3)0.098 (4)0.002 (3)0.021 (3)0.010 (2)
C160.069 (3)0.066 (3)0.080 (4)0.015 (2)0.012 (3)0.013 (3)
C170.066 (4)0.085 (4)0.080 (4)0.020 (3)0.006 (3)0.030 (3)
C180.074 (4)0.072 (4)0.100 (5)0.012 (3)0.013 (4)0.007 (3)
C190.067 (3)0.087 (4)0.089 (4)0.004 (3)0.015 (3)0.011 (3)
C200.061 (3)0.072 (4)0.091 (4)0.009 (3)0.004 (3)0.024 (3)
C210.073 (4)0.059 (3)0.121 (6)0.016 (3)0.029 (4)0.030 (3)
C220.080 (4)0.059 (3)0.089 (5)0.003 (2)0.033 (3)0.006 (3)
N10.080 (3)0.049 (2)0.155 (5)0.007 (2)0.069 (3)0.022 (3)
N20.053 (2)0.046 (2)0.090 (3)0.0027 (18)0.035 (2)0.016 (2)
N30.069 (3)0.068 (2)0.074 (3)0.012 (2)0.020 (2)0.002 (2)
N40.045 (3)0.053 (2)0.088 (3)0.0020 (19)0.010 (2)0.003 (2)
N50.050 (2)0.063 (3)0.084 (3)0.005 (2)0.014 (2)0.022 (3)
N60.061 (3)0.079 (3)0.068 (3)0.003 (2)0.009 (2)0.008 (2)
O10.057 (2)0.075 (2)0.095 (3)0.008 (2)0.037 (2)0.021 (2)
O20.0461 (19)0.059 (2)0.075 (2)0.0036 (15)0.0220 (17)0.0056 (17)
O1W0.088 (4)0.187 (5)0.107 (4)0.000 (4)0.009 (3)0.013 (4)
O3A0.120 (13)0.070 (8)0.113 (11)0.009 (8)0.033 (10)0.006 (8)
O3B0.114 (9)0.048 (4)0.227 (15)0.009 (5)0.085 (9)0.047 (7)
O4A0.050 (5)0.086 (6)0.209 (12)0.012 (4)0.004 (5)0.067 (7)
O4B0.050 (5)0.086 (6)0.209 (12)0.012 (4)0.004 (5)0.067 (7)
O50.140 (4)0.059 (2)0.103 (3)0.002 (3)0.048 (3)0.014 (2)
O60.071 (3)0.136 (4)0.118 (4)0.045 (3)0.018 (3)0.063 (3)
S1A0.087 (5)0.057 (3)0.095 (5)0.031 (3)0.059 (4)0.021 (4)
S1B0.064 (2)0.0434 (13)0.110 (3)0.0058 (14)0.038 (2)0.008 (2)
S20.0651 (8)0.0589 (7)0.0756 (9)0.0126 (6)0.0299 (7)0.0147 (7)
Zn10.0456 (3)0.0536 (3)0.0616 (3)0.0076 (2)0.0124 (3)0.0074 (3)
Geometric parameters (Å, º) top
C1—C61.368 (6)C18—C191.507 (7)
C1—C21.372 (6)C18—H18A0.9700
C1—C71.490 (6)C18—H18B0.9700
C2—C31.393 (8)C19—N51.471 (8)
C2—H20.9300C19—H19A0.9700
C3—C41.369 (8)C19—H19B0.9700
C3—H30.9300C20—N51.481 (6)
C4—C51.356 (8)C20—C211.492 (8)
C4—H40.9300C20—H20A0.9700
C5—C61.364 (7)C20—H20B0.9700
C5—H50.9300C21—C221.519 (8)
C6—S1A1.706 (9)C21—H21A0.9700
C6—S1B1.861 (7)C21—H21B0.9700
C7—O11.237 (6)C22—N31.466 (6)
C7—N11.333 (6)C22—H22A0.9700
C8—C131.355 (6)C22—H22B0.9700
C8—C91.367 (6)N1—S1B1.623 (6)
C8—C141.514 (6)N1—S1A1.671 (7)
C9—C101.372 (7)N2—S21.599 (4)
C9—H90.9300N3—Zn12.100 (4)
C10—C111.382 (8)N3—H3A0.9000
C10—H100.9300N3—H3B0.9000
C11—C121.381 (8)N4—Zn12.180 (5)
C11—H110.9300N4—H4A0.76 (7)
C12—C131.384 (6)N5—Zn12.174 (5)
C12—H120.9300N5—H5A1.00 (6)
C13—S21.769 (5)N6—Zn12.124 (4)
C14—O21.233 (5)N6—H6A0.9000
C14—N21.346 (6)N6—H6B0.9000
C15—N41.473 (6)O1—Zn12.204 (4)
C15—C161.515 (8)O2—Zn12.197 (3)
C15—H15A0.9700O1W—H1W0.86 (2)
C15—H15B0.9700O1W—H2W0.84 (2)
C16—C171.505 (8)O3A—S1A1.430 (14)
C16—H16A0.9700O3B—S1B1.395 (11)
C16—H16B0.9700O4A—S1A1.417 (14)
C17—N61.489 (7)O4B—S1B1.456 (11)
C17—H17A0.9700O5—S21.431 (5)
C17—H17B0.9700O6—S21.452 (4)
C18—N41.446 (7)
C6—C1—C2119.9 (4)C21—C20—H20B109.2
C6—C1—C7112.0 (4)H20A—C20—H20B107.9
C2—C1—C7128.1 (4)C20—C21—C22116.8 (5)
C1—C2—C3117.4 (5)C20—C21—H21A108.1
C1—C2—H2121.3C22—C21—H21A108.1
C3—C2—H2121.3C20—C21—H21B108.1
C4—C3—C2120.8 (5)C22—C21—H21B108.1
C4—C3—H3119.6H21A—C21—H21B107.3
C2—C3—H3119.6N3—C22—C21111.7 (4)
C5—C4—C3121.9 (5)N3—C22—H22A109.3
C5—C4—H4119.1C21—C22—H22A109.3
C3—C4—H4119.1N3—C22—H22B109.3
C4—C5—C6116.8 (5)C21—C22—H22B109.3
C4—C5—H5121.6H22A—C22—H22B107.9
C6—C5—H5121.6C7—N1—S1B113.3 (4)
C5—C6—C1123.2 (5)C7—N1—S1A105.5 (4)
C5—C6—S1A129.6 (4)C14—N2—S2110.9 (3)
C1—C6—S1A103.9 (4)C22—N3—Zn1117.6 (3)
C5—C6—S1B130.5 (4)C22—N3—H3A107.9
C1—C6—S1B105.7 (4)Zn1—N3—H3A107.9
O1—C7—N1124.8 (4)C22—N3—H3B107.9
O1—C7—C1121.7 (4)Zn1—N3—H3B107.9
N1—C7—C1113.5 (4)H3A—N3—H3B107.2
C13—C8—C9121.4 (4)C18—N4—C15112.7 (4)
C13—C8—C14110.8 (4)C18—N4—Zn1106.4 (3)
C9—C8—C14127.8 (4)C15—N4—Zn1115.5 (4)
C8—C9—C10117.8 (5)C18—N4—H4A134 (6)
C8—C9—H9121.1C15—N4—H4A100 (5)
C10—C9—H9121.1Zn1—N4—H4A86 (5)
C9—C10—C11121.2 (5)C19—N5—C20112.2 (5)
C9—C10—H10119.4C19—N5—Zn1105.2 (3)
C11—C10—H10119.4C20—N5—Zn1118.2 (4)
C12—C11—C10120.9 (5)C19—N5—H5A112 (3)
C12—C11—H11119.5C20—N5—H5A106 (3)
C10—C11—H11119.5Zn1—N5—H5A103 (3)
C11—C12—C13116.6 (5)C17—N6—Zn1116.7 (4)
C11—C12—H12121.7C17—N6—H6A108.1
C13—C12—H12121.7Zn1—N6—H6A108.1
C8—C13—C12122.1 (5)C17—N6—H6B108.1
C8—C13—S2107.1 (3)Zn1—N6—H6B108.1
C12—C13—S2130.7 (4)H6A—N6—H6B107.3
O2—C14—N2125.6 (4)C7—O1—Zn1134.7 (3)
O2—C14—C8120.8 (4)C14—O2—Zn1131.4 (3)
N2—C14—C8113.7 (4)H1W—O1W—H2W102 (7)
N4—C15—C16112.4 (4)O4A—S1A—O3A113.8 (13)
N4—C15—H15A109.1O4A—S1A—N199.0 (11)
C16—C15—H15A109.1O3A—S1A—N1119.6 (9)
N4—C15—H15B109.1O4A—S1A—C6106.5 (10)
C16—C15—H15B109.1O3A—S1A—C6117.9 (7)
H15A—C15—H15B107.9N1—S1A—C697.2 (4)
C17—C16—C15115.5 (5)O3B—S1B—O4B113.0 (8)
C17—C16—H16A108.4O3B—S1B—N1106.6 (6)
C15—C16—H16A108.4O4B—S1B—N1119.8 (5)
C17—C16—H16B108.4O3B—S1B—C6109.0 (7)
C15—C16—H16B108.4O4B—S1B—C6113.4 (4)
H16A—C16—H16B107.5N1—S1B—C693.1 (3)
N6—C17—C16113.5 (5)O5—S2—O6115.1 (3)
N6—C17—H17A108.9O5—S2—N2110.7 (3)
C16—C17—H17A108.9O6—S2—N2111.8 (2)
N6—C17—H17B108.9O5—S2—C13109.5 (2)
C16—C17—H17B108.9O6—S2—C13110.9 (3)
H17A—C17—H17B107.7N2—S2—C1397.5 (2)
N4—C18—C19110.7 (5)N3—Zn1—N699.03 (19)
N4—C18—H18A109.5N3—Zn1—N589.83 (19)
C19—C18—H18A109.5N6—Zn1—N5171.1 (2)
N4—C18—H18B109.5N3—Zn1—N4171.58 (18)
C19—C18—H18B109.5N6—Zn1—N489.30 (18)
H18A—C18—H18B108.1N5—Zn1—N481.88 (19)
N5—C19—C18109.5 (5)N3—Zn1—O288.58 (15)
N5—C19—H19A109.8N6—Zn1—O291.83 (16)
C18—C19—H19A109.8N5—Zn1—O287.23 (15)
N5—C19—H19B109.8N4—Zn1—O292.45 (16)
C18—C19—H19B109.8N3—Zn1—O191.14 (17)
H19A—C19—H19B108.2N6—Zn1—O188.13 (15)
N5—C20—C21112.1 (5)N5—Zn1—O192.84 (17)
N5—C20—H20A109.2N4—Zn1—O187.83 (17)
C21—C20—H20A109.2O2—Zn1—O1179.72 (18)
N5—C20—H20B109.2
C6—C1—C2—C30.8 (8)C1—C6—S1A—O4A127.3 (13)
C7—C1—C2—C3179.6 (5)S1B—C6—S1A—O4A29.9 (12)
C1—C2—C3—C42.0 (9)C5—C6—S1A—O3A56.1 (12)
C2—C3—C4—C53.0 (10)C1—C6—S1A—O3A103.4 (10)
C3—C4—C5—C62.7 (10)S1B—C6—S1A—O3A159.2 (13)
C4—C5—C6—C11.6 (9)C5—C6—S1A—N1174.9 (6)
C4—C5—C6—S1A157.6 (7)C1—C6—S1A—N125.7 (7)
C4—C5—C6—S1B168.0 (5)S1B—C6—S1A—N171.8 (6)
C2—C1—C6—C50.7 (9)C7—N1—S1B—O3B125.5 (9)
C7—C1—C6—C5179.6 (5)S1A—N1—S1B—O3B45.7 (10)
C2—C1—C6—S1A161.8 (6)C7—N1—S1B—O4B104.7 (7)
C7—C1—C6—S1A18.5 (7)S1A—N1—S1B—O4B175.6 (10)
C2—C1—C6—S1B171.1 (5)C7—N1—S1B—C614.6 (6)
C7—C1—C6—S1B8.6 (6)S1A—N1—S1B—C665.1 (7)
C6—C1—C7—O1179.7 (5)C5—C6—S1B—O3B67.1 (9)
C2—C1—C7—O10.0 (9)C1—C6—S1B—O3B122.0 (7)
C6—C1—C7—N11.1 (7)S1A—C6—S1B—O3B32.4 (8)
C2—C1—C7—N1179.3 (6)C5—C6—S1B—O4B59.8 (8)
C13—C8—C9—C101.1 (7)C1—C6—S1B—O4B111.2 (6)
C14—C8—C9—C10179.4 (4)S1A—C6—S1B—O4B159.2 (9)
C8—C9—C10—C110.1 (8)C5—C6—S1B—N1175.8 (6)
C9—C10—C11—C120.7 (9)C1—C6—S1B—N113.3 (5)
C10—C11—C12—C130.6 (8)S1A—C6—S1B—N176.4 (6)
C9—C8—C13—C121.2 (7)C14—N2—S2—O5115.8 (4)
C14—C8—C13—C12179.2 (4)C14—N2—S2—O6114.4 (4)
C9—C8—C13—S2178.4 (4)C14—N2—S2—C131.7 (4)
C14—C8—C13—S21.2 (5)C8—C13—S2—O5116.8 (4)
C11—C12—C13—C80.3 (8)C12—C13—S2—O563.7 (6)
C11—C12—C13—S2179.2 (4)C8—C13—S2—O6115.1 (4)
C13—C8—C14—O2178.9 (5)C12—C13—S2—O664.4 (6)
C9—C8—C14—O21.6 (7)C8—C13—S2—N21.7 (4)
C13—C8—C14—N20.1 (6)C12—C13—S2—N2178.8 (5)
C9—C8—C14—N2179.4 (5)C22—N3—Zn1—N6138.1 (4)
N4—C15—C16—C1770.4 (6)C22—N3—Zn1—N540.7 (4)
C15—C16—C17—N668.9 (6)C22—N3—Zn1—O246.5 (4)
N4—C18—C19—N559.4 (7)C22—N3—Zn1—O1133.6 (4)
N5—C20—C21—C2268.2 (7)C17—N6—Zn1—N3136.5 (4)
C20—C21—C22—N372.1 (6)C17—N6—Zn1—N442.2 (4)
O1—C7—N1—S1B168.7 (5)C17—N6—Zn1—O2134.6 (4)
C1—C7—N1—S1B12.1 (8)C17—N6—Zn1—O145.6 (4)
O1—C7—N1—S1A161.8 (7)C19—N5—Zn1—N3163.8 (3)
C1—C7—N1—S1A17.4 (8)C20—N5—Zn1—N337.6 (4)
O2—C14—N2—S2179.9 (4)C19—N5—Zn1—N417.7 (3)
C8—C14—N2—S21.2 (5)C20—N5—Zn1—N4143.8 (5)
C21—C22—N3—Zn160.2 (6)C19—N5—Zn1—O275.2 (3)
C19—C18—N4—C15167.5 (5)C20—N5—Zn1—O251.0 (4)
C19—C18—N4—Zn140.0 (6)C19—N5—Zn1—O1105.1 (3)
C16—C15—N4—C18176.7 (5)C20—N5—Zn1—O1128.8 (4)
C16—C15—N4—Zn160.7 (5)C18—N4—Zn1—N6169.4 (4)
C18—C19—N5—C20174.1 (5)C15—N4—Zn1—N643.5 (4)
C18—C19—N5—Zn144.3 (5)C18—N4—Zn1—N511.9 (4)
C21—C20—N5—C19176.1 (5)C15—N4—Zn1—N5137.8 (4)
C21—C20—N5—Zn153.4 (6)C18—N4—Zn1—O298.8 (4)
C16—C17—N6—Zn158.9 (6)C15—N4—Zn1—O2135.3 (4)
N1—C7—O1—Zn16.3 (10)C18—N4—Zn1—O181.3 (4)
C1—C7—O1—Zn1174.6 (4)C15—N4—Zn1—O144.6 (4)
N2—C14—O2—Zn12.1 (8)C14—O2—Zn1—N3142.0 (5)
C8—C14—O2—Zn1179.1 (3)C14—O2—Zn1—N643.0 (4)
C7—N1—S1A—O4A133.4 (12)C14—O2—Zn1—N5128.1 (5)
S1B—N1—S1A—O4A23.0 (11)C14—O2—Zn1—N446.4 (5)
C7—N1—S1A—O3A102.6 (9)C7—O1—Zn1—N346.4 (6)
S1B—N1—S1A—O3A147.1 (12)C7—O1—Zn1—N6145.4 (6)
C7—N1—S1A—C625.4 (8)C7—O1—Zn1—N543.5 (6)
S1B—N1—S1A—C685.0 (9)C7—O1—Zn1—N4125.3 (6)
C5—C6—S1A—O4A73.2 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.902.563.282 (7)137
N6—H6A···N20.902.523.224 (6)135
N5—H5A···N11.00 (6)2.60 (6)3.411 (7)138 (4)
N4—H4A···N20.76 (7)2.53 (7)3.278 (6)166 (7)
O1W—H1W···O50.86 (2)2.01 (3)2.833 (8)161 (8)
N3—H3B···O1Wi0.902.223.052 (7)154
N6—H6B···O1Wi0.902.223.071 (9)157
Symmetry code: (i) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H4NO3S)2(C8H22N4)]·H2O
Mr622.03
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.1025 (5), 14.3045 (10), 19.2547 (11)
V3)2782.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.32 × 0.30 × 0.25
Data collection
DiffractometerStoe IPDSII
Absorption correctionNumerical
(X-RED32; Stoe, 2002)
Tmin, Tmax0.710, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
49189, 6894, 3763
Rint0.148
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.122, 0.92
No. of reflections6894
No. of parameters381
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.36
Absolute structureFlack (1983), 3014 Friedel pairs
Absolute structure parameter0.449 (17)

Computer programs: X-AREA (Stoe, 2002), X-RED32 (Stoe, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N3—Zn12.100 (4)N6—Zn12.124 (4)
N4—Zn12.180 (5)O1—Zn12.204 (4)
N5—Zn12.174 (5)O2—Zn12.197 (3)
N6—Zn1—N5171.1 (2)O2—Zn1—O1179.72 (18)
N3—Zn1—N4171.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.902.563.282 (7)137.2
N6—H6A···N20.902.523.224 (6)135.3
N5—H5A···N11.00 (6)2.60 (6)3.411 (7)138 (4)
N4—H4A···N20.76 (7)2.53 (7)3.278 (6)166 (7)
O1W—H1W···O50.86 (2)2.01 (3)2.833 (8)161 (8)
N3—H3B···O1Wi0.902.223.052 (7)154.2
N6—H6B···O1Wi0.902.223.071 (9)157.0
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds