Download citation
Download citation
link to html
The crystal structure of the title compound, nickel telluride, with composition Ni2.60Te2, has been the subject of a previous investigation based on X-ray powder data, when a slightly different composition of Ni2.58Te2 was determined [Gulay & Olekseyuk (2004). J. Alloys Compd, 376, 131-138]. In contrast to the previous refinement in the space group Pmc21, the redetermination from single-crystal data reveals a centre of symmetry and the structure was refined in the space group Pnma with improved precision for the atomic coordinates and inter­atomic distances. The structure can be described as a c × a × (3a)1/2 distorted ortho­rhom­bic variant of the hex­ag­onal Ni1.10Se0.16Te0.74 structure. All atoms are situated on mirror planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050568/wm2152sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050568/wm2152Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](e-Ni) = 0.001 Å
  • Disorder in main residue
  • R factor = 0.025
  • wR factor = 0.060
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.98 Deg. PLAT301_ALERT_3_B Main Residue Disorder ......................... 36.00 Perc.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure of the binary Ni2.58Te2 compound has been investigated recently using X-ray powder diffraction data (space group Pmc21, a = 3.9089 (2) Å, b = 6.8627 (3) Å, c = 12.3400 (6) Å; Gulay & Olekseyuk, 2004). We have now redetermined the crystal structure of this compound by means of single-crystal X-ray diffraction data and present the results here.

The composition Ni2.60Te2 and the unit-cell parameters of the single-crystal study are very similar to those of the powder refinement. However, the centrosymmetric space group Pnma was determined for the title compound in contrast to the non-centrosymmetric space group Pmc21 determined for the powder study. Nevertheless, the topologies and interatomic distances of both centrosymmetric and non-centrosymmetric models are very similar. The structure can be described as a close-packed arrangement of Te atoms with a stacking sequence of the layers as –ABAC–. The Ni atoms partially occupy octahedral and tetrahedral interstices of the Te sublattice. The unit cell and coordination polyhedra of the Ni atoms are shown in Fig. 1. In an alternative description, the structure of the compound can be viewed as a c× a × (3a)1/2 distorted orthorhombic variant of the hexagonal Ni1.10Se0.16Te0.74 structure (space group P63/mmc, a = 3.836 (1) Å, c = 12.24 (1) Å; Haugsten & Røst, 1972).

Related literature top

For the previous structure refinement of the title compound from powder data, see: Gulay & Olekseyuk (2004). For the Ni1.10Se0.16Te0.74 structure, see: Haugsten & Røst (1972). For crystallographic tools, see: Spek (2003).

Experimental top

The sample with composition Ni56.5Te43.5 was prepared by fusion of the elemental constituents (Alfa Aesar, > 99.9 wt. %) in an evacuated silica ampoule. The synthesis was performed in a tube furnace with a heating rate of 30 K/h and a maximum temperature of about 1370 K. The sample was kept at this temperature for 4 h. Afterwards it was cooled slowly down to 850 K with a rate of 10 K/h and annealed at 850 K for another 240 h. Then the sample was quenched in cold water. The obtained black crystals had a prismatic habit and maximal lengths of 0.2 mm.

Refinement top

The site occupancy factors for Ni2 and Ni3 were constrained (s.o.f. = 0.8) according to the employed composition of the sample. Results of single-crystal reinvestigation of Ni2.60Te2 agree well with those reported on the basis of the powder diffraction study, but with improved precision on atomic coordinates and interatomic distances. Space group Pnma was confirmed with PLATON (Spek, 2003) and no additional symmetry elements were found. The highest peak and the deepest hole in the final Fourier map are found 1.78 Å and 1.05 Å, respectively, from atom Te1.

Structure description top

The crystal structure of the binary Ni2.58Te2 compound has been investigated recently using X-ray powder diffraction data (space group Pmc21, a = 3.9089 (2) Å, b = 6.8627 (3) Å, c = 12.3400 (6) Å; Gulay & Olekseyuk, 2004). We have now redetermined the crystal structure of this compound by means of single-crystal X-ray diffraction data and present the results here.

The composition Ni2.60Te2 and the unit-cell parameters of the single-crystal study are very similar to those of the powder refinement. However, the centrosymmetric space group Pnma was determined for the title compound in contrast to the non-centrosymmetric space group Pmc21 determined for the powder study. Nevertheless, the topologies and interatomic distances of both centrosymmetric and non-centrosymmetric models are very similar. The structure can be described as a close-packed arrangement of Te atoms with a stacking sequence of the layers as –ABAC–. The Ni atoms partially occupy octahedral and tetrahedral interstices of the Te sublattice. The unit cell and coordination polyhedra of the Ni atoms are shown in Fig. 1. In an alternative description, the structure of the compound can be viewed as a c× a × (3a)1/2 distorted orthorhombic variant of the hexagonal Ni1.10Se0.16Te0.74 structure (space group P63/mmc, a = 3.836 (1) Å, c = 12.24 (1) Å; Haugsten & Røst, 1972).

For the previous structure refinement of the title compound from powder data, see: Gulay & Olekseyuk (2004). For the Ni1.10Se0.16Te0.74 structure, see: Haugsten & Røst (1972). For crystallographic tools, see: Spek (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The crystal structure of Ni2.60Te2 viewed along the b axis and displayed with displacement ellipsoids at the 50% probability level.
nickel telluride top
Crystal data top
Ni2.60Te2F(000) = 707
Mr = 407.85Dx = 8.113 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 329 reflections
a = 12.380 (2) Åθ = 3.4–25.0°
b = 3.9192 (8) ŵ = 31.39 mm1
c = 6.8818 (13) ÅT = 293 K
V = 333.91 (12) Å3Prism, black
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
335 independent reflections
Radiation source: fine-focus sealed tube329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1412
Absorption correction: numerical
CrysAlis RED (Oxford Diffraction, 2007)
k = 44
Tmin = 0.051, Tmax = 0.323l = 88
2788 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0225P)2 + 4.6665P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.23 e Å3
335 reflectionsΔρmin = 1.45 e Å3
32 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (3)
Crystal data top
Ni2.60Te2V = 333.91 (12) Å3
Mr = 407.85Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.380 (2) ŵ = 31.39 mm1
b = 3.9192 (8) ÅT = 293 K
c = 6.8818 (13) Å0.14 × 0.09 × 0.04 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
335 independent reflections
Absorption correction: numerical
CrysAlis RED (Oxford Diffraction, 2007)
329 reflections with I > 2σ(I)
Tmin = 0.051, Tmax = 0.323Rint = 0.068
2788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02532 parameters
wR(F2) = 0.0600 restraints
S = 1.10Δρmax = 1.23 e Å3
335 reflectionsΔρmin = 1.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.05235 (10)0.25000.4203 (2)0.0152 (4)
Ni20.14310 (14)0.25000.0802 (3)0.0185 (4)0.80
Ni30.15349 (14)0.25000.5956 (3)0.0191 (5)0.80
Te10.25343 (5)0.25000.42149 (10)0.0131 (3)
Te20.00373 (5)0.25000.78163 (10)0.0146 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0131 (7)0.0139 (7)0.0186 (8)0.0000.0020 (6)0.000
Ni20.0139 (9)0.0235 (9)0.0182 (10)0.0000.0043 (7)0.000
Ni30.0109 (9)0.0182 (9)0.0283 (11)0.0000.0046 (8)0.000
Te10.0095 (4)0.0123 (4)0.0174 (5)0.0000.0001 (2)0.000
Te20.0159 (5)0.0117 (4)0.0162 (4)0.0000.0007 (3)0.000
Geometric parameters (Å, º) top
Ni1—Te12.4894 (14)Ni2—Te2vi2.6831 (19)
Ni1—Te2i2.5007 (10)Ni2—Te12.717 (2)
Ni1—Te2ii2.5007 (10)Ni2—Te2i2.8370 (13)
Ni1—Ni3i2.551 (2)Ni2—Te2ii2.8370 (13)
Ni1—Te22.5582 (16)Ni3—Ni2vii2.521 (3)
Ni1—Ni1i2.5928 (16)Ni3—Te1vii2.5214 (19)
Ni1—Ni1ii2.5928 (16)Ni3—Ni1i2.551 (2)
Ni1—Ni22.596 (2)Ni3—Te12.6090 (13)
Ni1—Ni3iii2.6197 (14)Ni3—Te1viii2.6090 (13)
Ni1—Ni32.6197 (14)Ni3—Ni1viii2.6197 (14)
Ni2—Ni3iv2.521 (3)Ni3—Te2viii2.9860 (15)
Ni2—Te1v2.5834 (12)Ni3—Te22.9860 (15)
Ni2—Te1iv2.5834 (12)
Te1—Ni1—Te2i106.22 (4)Ni2vii—Ni3—Te1viii60.45 (4)
Te1—Ni1—Te2ii106.22 (4)Te1vii—Ni3—Te1viii101.05 (5)
Te2i—Ni1—Te2ii103.18 (6)Ni1i—Ni3—Te1viii117.01 (5)
Te1—Ni1—Ni3i177.72 (8)Te1—Ni3—Te1viii97.37 (6)
Te2i—Ni1—Ni3i72.47 (4)Ni2vii—Ni3—Ni1viii117.27 (6)
Te2ii—Ni1—Ni3i72.47 (4)Te1vii—Ni3—Ni1viii128.90 (4)
Te1—Ni1—Te2103.43 (5)Ni1i—Ni3—Ni1viii60.18 (5)
Te2i—Ni1—Te2118.35 (4)Te1—Ni3—Ni1viii125.24 (7)
Te2ii—Ni1—Te2118.35 (4)Te1viii—Ni3—Ni1viii56.86 (3)
Ni3i—Ni1—Te278.85 (6)Ni2vii—Ni3—Ni1117.27 (6)
Te1—Ni1—Ni1i119.91 (6)Te1vii—Ni3—Ni1128.90 (4)
Te2i—Ni1—Ni1i60.26 (4)Ni1i—Ni3—Ni160.18 (5)
Te2ii—Ni1—Ni1i133.51 (8)Te1—Ni3—Ni156.86 (3)
Ni3i—Ni1—Ni1i61.23 (5)Te1viii—Ni3—Ni1125.24 (7)
Te2—Ni1—Ni1i58.08 (5)Ni1viii—Ni3—Ni196.84 (7)
Te1—Ni1—Ni1ii119.91 (6)Ni2vii—Ni3—Te2viii129.67 (5)
Te2i—Ni1—Ni1ii133.51 (8)Te1vii—Ni3—Te2viii84.40 (5)
Te2ii—Ni1—Ni1ii60.26 (4)Ni1i—Ni3—Te2viii52.99 (4)
Ni3i—Ni1—Ni1ii61.23 (5)Te1—Ni3—Te2viii169.83 (6)
Te2—Ni1—Ni1ii58.08 (5)Te1viii—Ni3—Te2viii89.91 (2)
Ni1i—Ni1—Ni1ii98.19 (8)Ni1viii—Ni3—Te2viii53.82 (4)
Te1—Ni1—Ni264.54 (5)Ni1—Ni3—Te2viii113.05 (6)
Te2i—Ni1—Ni267.61 (4)Ni2vii—Ni3—Te2129.67 (5)
Te2ii—Ni1—Ni267.61 (4)Te1vii—Ni3—Te284.40 (5)
Ni3i—Ni1—Ni2113.18 (8)Ni1i—Ni3—Te252.99 (4)
Te2—Ni1—Ni2167.97 (7)Te1—Ni3—Te289.91 (2)
Ni1i—Ni1—Ni2126.70 (6)Te1viii—Ni3—Te2169.83 (6)
Ni1ii—Ni1—Ni2126.70 (6)Ni1viii—Ni3—Te2113.05 (6)
Te1—Ni1—Ni3iii61.35 (4)Ni1—Ni3—Te253.82 (4)
Te2i—Ni1—Ni3iii167.10 (6)Te2viii—Ni3—Te282.03 (5)
Te2ii—Ni1—Ni3iii78.60 (4)Ni1—Te1—Ni3iv117.01 (6)
Ni3i—Ni1—Ni3iii119.82 (5)Ni1—Te1—Ni2ix119.82 (4)
Te2—Ni1—Ni3iii70.43 (5)Ni3iv—Te1—Ni2ix98.59 (5)
Ni1i—Ni1—Ni3iii127.56 (9)Ni1—Te1—Ni2vii119.82 (4)
Ni1ii—Ni1—Ni3iii58.59 (5)Ni3iv—Te1—Ni2vii98.59 (5)
Ni2—Ni1—Ni3iii102.02 (6)Ni2ix—Te1—Ni2vii98.67 (6)
Te1—Ni1—Ni361.35 (4)Ni1—Te1—Ni3iii61.78 (4)
Te2i—Ni1—Ni378.60 (4)Ni3iv—Te1—Ni3iii128.70 (4)
Te2ii—Ni1—Ni3167.10 (6)Ni2ix—Te1—Ni3iii58.08 (6)
Ni3i—Ni1—Ni3119.82 (5)Ni2vii—Te1—Ni3iii127.64 (6)
Te2—Ni1—Ni370.43 (5)Ni1—Te1—Ni361.78 (4)
Ni1i—Ni1—Ni358.59 (5)Ni3iv—Te1—Ni3128.70 (4)
Ni1ii—Ni1—Ni3127.56 (9)Ni2ix—Te1—Ni3127.64 (6)
Ni2—Ni1—Ni3102.02 (6)Ni2vii—Te1—Ni358.08 (6)
Ni3iii—Ni1—Ni396.84 (7)Ni3iii—Te1—Ni397.37 (6)
Ni3iv—Ni2—Te1v61.47 (4)Ni1—Te1—Ni259.64 (5)
Ni3iv—Ni2—Te1iv61.47 (4)Ni3iv—Te1—Ni257.38 (6)
Te1v—Ni2—Te1iv98.67 (6)Ni2ix—Te1—Ni2127.93 (4)
Ni3iv—Ni2—Ni1113.23 (8)Ni2vii—Te1—Ni2127.93 (4)
Te1v—Ni2—Ni1126.56 (4)Ni3iii—Te1—Ni299.12 (5)
Te1iv—Ni2—Ni1126.56 (4)Ni3—Te1—Ni299.12 (5)
Ni3iv—Ni2—Te2vi132.43 (8)Ni1i—Te2—Ni1ii103.18 (6)
Te1v—Ni2—Te2vi89.72 (5)Ni1i—Te2—Ni161.65 (4)
Te1iv—Ni2—Te2vi89.72 (5)Ni1ii—Te2—Ni161.65 (4)
Ni1—Ni2—Te2vi114.34 (7)Ni1i—Te2—Ni2x127.17 (3)
Ni3iv—Ni2—Te157.41 (6)Ni1ii—Te2—Ni2x127.17 (3)
Te1v—Ni2—Te196.67 (5)Ni1—Te2—Ni2x126.37 (5)
Te1iv—Ni2—Te196.67 (5)Ni1i—Te2—Ni2i57.80 (4)
Ni1—Ni2—Te155.82 (5)Ni1ii—Te2—Ni2i123.34 (5)
Te2vi—Ni2—Te1170.16 (8)Ni1—Te2—Ni2i118.46 (4)
Ni3iv—Ni2—Te2i128.76 (5)Ni2x—Te2—Ni2i98.94 (5)
Te1v—Ni2—Te2i169.54 (7)Ni1i—Te2—Ni2ii123.34 (5)
Te1iv—Ni2—Te2i86.30 (2)Ni1ii—Te2—Ni2ii57.80 (4)
Ni1—Ni2—Te2i54.59 (3)Ni1—Te2—Ni2ii118.46 (4)
Te2vi—Ni2—Te2i81.06 (5)Ni2x—Te2—Ni2ii98.94 (5)
Te1—Ni2—Te2i91.86 (5)Ni2i—Te2—Ni2ii87.38 (5)
Ni3iv—Ni2—Te2ii128.76 (5)Ni1i—Te2—Ni3iii116.64 (5)
Te1v—Ni2—Te2ii86.30 (2)Ni1ii—Te2—Ni3iii54.54 (4)
Te1iv—Ni2—Te2ii169.54 (7)Ni1—Te2—Ni3iii55.75 (4)
Ni1—Ni2—Te2ii54.59 (3)Ni2x—Te2—Ni3iii85.93 (5)
Te2vi—Ni2—Te2ii81.06 (5)Ni2i—Te2—Ni3iii174.17 (5)
Te1—Ni2—Te2ii91.86 (5)Ni2ii—Te2—Ni3iii95.06 (4)
Te2i—Ni2—Te2ii87.38 (5)Ni1i—Te2—Ni354.54 (4)
Ni2vii—Ni3—Te1vii65.21 (6)Ni1ii—Te2—Ni3116.64 (5)
Ni2vii—Ni3—Ni1i175.12 (10)Ni1—Te2—Ni355.75 (4)
Te1vii—Ni3—Ni1i119.66 (8)Ni2x—Te2—Ni385.93 (5)
Ni2vii—Ni3—Te160.45 (4)Ni2i—Te2—Ni395.06 (4)
Te1vii—Ni3—Te1101.05 (5)Ni2ii—Te2—Ni3174.17 (5)
Ni1i—Ni3—Te1117.01 (5)Ni3iii—Te2—Ni382.03 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1/2, y, z1/2; (v) x+1/2, y+1, z1/2; (vi) x, y, z1; (vii) x+1/2, y, z+1/2; (viii) x, y1, z; (ix) x+1/2, y+1, z+1/2; (x) x, y, z+1.

Experimental details

Crystal data
Chemical formulaNi2.60Te2
Mr407.85
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)12.380 (2), 3.9192 (8), 6.8818 (13)
V3)333.91 (12)
Z4
Radiation typeMo Kα
µ (mm1)31.39
Crystal size (mm)0.14 × 0.09 × 0.04
Data collection
DiffractometerKuma KM-4 with CCD area-detector
Absorption correctionNumerical
CrysAlis RED (Oxford Diffraction, 2007)
Tmin, Tmax0.051, 0.323
No. of measured, independent and
observed [I > 2σ(I)] reflections
2788, 335, 329
Rint0.068
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.10
No. of reflections335
No. of parameters32
Δρmax, Δρmin (e Å3)1.23, 1.45

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2005), publCIF (Westrip, 2007).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds