Download citation
Download citation
link to html
The title compound, [Ni(C23H17N4O)(N3)], was obtained by the reaction of the Schiff base ligand 2-[(tri-2-pyridylmethyl)­imino­meth­yl]phenol with sodium azide and nickel(II) per­chlor­ate in methanol solution. The NiII atom is four-coordinated by the phenolate O, the imine N and a pyridine N atom of the Schiff base ligand, and by the terminal N atom of an azide ligand, forming a square-planar geometry. The other two pyridyl rings are oriented at an angle of 72.29 (11)° to each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051793/wn2208sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051793/wn2208Isup2.hkl
Contains datablock I

CCDC reference: 663101

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.097
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (3) 2.86
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Nickel complexes with Schiff bases have received much attention in recent years due to their pharmacological and catalytic properties (Borisova et al., 2007; Bruckner et al., 2000). 2-(Tri-2-pyridylmethyliminomethyl)phenol is a potential N4O pentadentate Schiff base ligand and its complexes with copper(II) have been reported (Arnold et al., 2003; Li & Gao, 2007). We report here the crystal structure of the title compound (Fig. 1).

In the mononuclear nickel complex, the environment around the central nickel atom is essentially square-planar, with a maximum deviation of 0.0529 (32) Å for atom N3. Three of the coordination sites are occupied by the phenolate O1, imine N2 and pyridine N1 atoms of the Schiff base ligand and the fourth site by the terminal N atom of an azide ligand. The other two N atoms of the pyridine rings in the Schiff base are distant from the metal. The Ni1—N1 (pyridine) distance is appreciably longer than that for Ni1—N2 (imine), and the Ni—N3 (azide) distance is almost the same as that found in azido{N-[2-(N,N-diethylamino)ethyl]salicylideneiminato}nickel(II) [1.901 (2) Å] (Mondal et al., 2001) and azido{2,4-dibromo-6-[(2-diethylaminoethylimino)methyl]phenolato}nickel(II) [1.897 (3) Å] (Li et al., 2007).

Related literature top

For related literature, see: Arnold et al. (2003); Borisova et al. (2007); Bruckner et al. (2000); Li & Gao (2007); Li et al. (2007); Mondal et al. (2001).

Experimental top

2-(Tri-2-pyridylmethyliminomethyl)phenol (0.183 g, 0.5 mmol) and Ni(ClO4)2·6H2O (0.183 g, 0.5 mmol) were stirred in methanol (10 ml) for 20 min. To this solution was added a solution of NaN3 (0.065 g, 1.0 mmol) in water (2 ml). The mixture was stirred for a further 10 min at room temperature, and then filtered. After keeping the filtrate in air for 3 d, brown plate crystals were formed.

Refinement top

H atoms were placed at calculated positions and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Nickel complexes with Schiff bases have received much attention in recent years due to their pharmacological and catalytic properties (Borisova et al., 2007; Bruckner et al., 2000). 2-(Tri-2-pyridylmethyliminomethyl)phenol is a potential N4O pentadentate Schiff base ligand and its complexes with copper(II) have been reported (Arnold et al., 2003; Li & Gao, 2007). We report here the crystal structure of the title compound (Fig. 1).

In the mononuclear nickel complex, the environment around the central nickel atom is essentially square-planar, with a maximum deviation of 0.0529 (32) Å for atom N3. Three of the coordination sites are occupied by the phenolate O1, imine N2 and pyridine N1 atoms of the Schiff base ligand and the fourth site by the terminal N atom of an azide ligand. The other two N atoms of the pyridine rings in the Schiff base are distant from the metal. The Ni1—N1 (pyridine) distance is appreciably longer than that for Ni1—N2 (imine), and the Ni—N3 (azide) distance is almost the same as that found in azido{N-[2-(N,N-diethylamino)ethyl]salicylideneiminato}nickel(II) [1.901 (2) Å] (Mondal et al., 2001) and azido{2,4-dibromo-6-[(2-diethylaminoethylimino)methyl]phenolato}nickel(II) [1.897 (3) Å] (Li et al., 2007).

For related literature, see: Arnold et al. (2003); Borisova et al. (2007); Bruckner et al. (2000); Li & Gao (2007); Li et al. (2007); Mondal et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
Azido{2-[(tri-2-pyridylmethyl)iminomethyl]phenolato}nickel(II) top
Crystal data top
[Ni(C23H17N4O)(N3)]F(000) = 960
Mr = 466.15Dx = 1.547 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2703 reflections
a = 10.7977 (12) Åθ = 2.2–25.0°
b = 14.9156 (16) ŵ = 1.00 mm1
c = 12.7543 (14) ÅT = 295 K
β = 103.044 (2)°Plate, brown
V = 2001.1 (4) Å30.10 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3723 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1312
Tmin = 0.906, Tmax = 0.966k = 1817
14754 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ni(C23H17N4O)(N3)]V = 2001.1 (4) Å3
Mr = 466.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7977 (12) ŵ = 1.00 mm1
b = 14.9156 (16) ÅT = 295 K
c = 12.7543 (14) Å0.10 × 0.08 × 0.04 mm
β = 103.044 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
3723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2616 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.966Rint = 0.081
14754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.94Δρmax = 0.48 e Å3
3723 reflectionsΔρmin = 0.63 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82925 (4)0.91145 (3)0.74918 (3)0.03162 (15)
N11.0057 (2)0.93353 (17)0.78930 (19)0.0319 (6)
N20.8733 (2)0.81489 (16)0.67416 (19)0.0292 (6)
N30.7952 (3)1.0088 (2)0.8344 (3)0.0571 (9)
N40.6969 (3)1.01342 (19)0.8625 (2)0.0430 (8)
N50.6054 (3)1.0224 (2)0.8930 (2)0.0580 (9)
N61.1723 (3)0.6869 (2)0.7657 (2)0.0490 (8)
N71.0587 (3)0.8768 (2)0.5391 (2)0.0439 (7)
O10.6589 (2)0.89314 (15)0.70908 (18)0.0417 (6)
C11.0501 (3)0.7098 (2)0.7556 (2)0.0336 (8)
C20.9695 (4)0.6632 (2)0.8061 (3)0.0430 (9)
H20.88470.67990.79630.052*
C31.0169 (4)0.5915 (3)0.8713 (3)0.0540 (10)
H30.96390.55870.90510.065*
C41.1417 (4)0.5694 (2)0.8856 (3)0.0578 (11)
H41.17610.52220.93060.069*
C51.2157 (4)0.6183 (3)0.8320 (3)0.0586 (11)
H51.30110.60300.84230.070*
C61.0479 (3)0.7177 (2)0.5191 (3)0.0387 (8)
H61.03900.66190.54920.046*
C71.0655 (3)0.7244 (3)0.4155 (3)0.0509 (10)
H71.06610.67340.37370.061*
C81.0819 (4)0.8081 (3)0.3753 (3)0.0545 (11)
H81.09630.81460.30650.065*
C91.0765 (4)0.8817 (3)0.4388 (3)0.0556 (11)
H91.08580.93810.41050.067*
C101.0438 (3)0.7951 (2)0.5771 (2)0.0334 (8)
C111.0124 (3)0.7957 (2)0.6893 (2)0.0313 (7)
C121.0804 (3)0.8732 (2)0.7551 (2)0.0311 (7)
C131.2115 (3)0.8817 (2)0.7806 (3)0.0401 (9)
H131.26190.83940.75640.048*
C141.2667 (3)0.9531 (2)0.8417 (3)0.0443 (9)
H141.35470.95960.85950.053*
C151.1901 (3)1.0148 (2)0.8761 (3)0.0451 (9)
H151.22541.06380.91730.054*
C161.0610 (3)1.0032 (2)0.8490 (3)0.0407 (9)
H161.00951.04500.87280.049*
C170.7940 (3)0.7606 (2)0.6136 (2)0.0324 (8)
H170.82820.71520.57880.039*
C180.6602 (3)0.7650 (2)0.5961 (2)0.0299 (7)
C190.5858 (3)0.7001 (2)0.5293 (2)0.0349 (8)
H190.62580.65700.49580.042*
C200.4565 (3)0.6994 (2)0.5130 (3)0.0394 (8)
H200.40870.65600.46940.047*
C210.3973 (3)0.7644 (2)0.5625 (3)0.0430 (9)
H210.30910.76430.55140.052*
C220.4660 (3)0.8284 (2)0.6270 (3)0.0398 (9)
H220.42400.87110.65950.048*
C230.5989 (3)0.8307 (2)0.6451 (2)0.0306 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (2)0.0333 (2)0.0331 (2)0.0004 (2)0.00817 (17)0.0062 (2)
N10.0310 (15)0.0362 (16)0.0292 (15)0.0020 (13)0.0085 (12)0.0003 (12)
N20.0279 (15)0.0329 (15)0.0278 (14)0.0004 (12)0.0084 (12)0.0035 (12)
N30.0398 (19)0.058 (2)0.076 (2)0.0026 (17)0.0191 (18)0.0313 (18)
N40.044 (2)0.0416 (18)0.0398 (18)0.0105 (16)0.0026 (16)0.0104 (14)
N50.050 (2)0.074 (2)0.052 (2)0.0180 (19)0.0171 (17)0.0061 (17)
N60.0415 (19)0.0527 (19)0.0504 (19)0.0136 (16)0.0052 (15)0.0003 (16)
N70.0504 (19)0.0499 (19)0.0327 (16)0.0009 (15)0.0122 (14)0.0014 (14)
O10.0330 (13)0.0443 (15)0.0483 (14)0.0006 (11)0.0105 (11)0.0147 (11)
C10.036 (2)0.037 (2)0.0279 (18)0.0005 (16)0.0066 (15)0.0089 (14)
C20.049 (2)0.044 (2)0.038 (2)0.0021 (18)0.0119 (17)0.0045 (17)
C30.079 (3)0.045 (2)0.036 (2)0.005 (2)0.011 (2)0.0035 (19)
C40.083 (3)0.035 (2)0.048 (2)0.009 (2)0.002 (2)0.0028 (18)
C50.054 (3)0.055 (3)0.059 (3)0.015 (2)0.004 (2)0.009 (2)
C60.033 (2)0.050 (2)0.036 (2)0.0004 (17)0.0116 (16)0.0067 (16)
C70.040 (2)0.074 (3)0.040 (2)0.002 (2)0.0112 (18)0.020 (2)
C80.053 (3)0.082 (3)0.030 (2)0.003 (2)0.0112 (18)0.001 (2)
C90.062 (3)0.067 (3)0.039 (2)0.003 (2)0.015 (2)0.012 (2)
C100.0247 (18)0.046 (2)0.0292 (18)0.0002 (16)0.0064 (14)0.0043 (16)
C110.0262 (18)0.0382 (19)0.0301 (18)0.0003 (15)0.0077 (14)0.0028 (15)
C120.0300 (18)0.0384 (19)0.0258 (17)0.0005 (15)0.0085 (14)0.0009 (14)
C130.0321 (19)0.050 (2)0.043 (2)0.0024 (17)0.0181 (16)0.0057 (17)
C140.030 (2)0.056 (2)0.045 (2)0.0094 (18)0.0048 (16)0.0035 (19)
C150.042 (2)0.045 (2)0.047 (2)0.0138 (18)0.0086 (18)0.0084 (17)
C160.046 (2)0.037 (2)0.039 (2)0.0041 (17)0.0096 (17)0.0108 (16)
C170.0335 (19)0.0335 (19)0.0318 (18)0.0014 (15)0.0103 (15)0.0045 (15)
C180.0290 (18)0.0352 (19)0.0244 (16)0.0012 (15)0.0037 (14)0.0044 (14)
C190.035 (2)0.041 (2)0.0277 (18)0.0020 (16)0.0051 (15)0.0006 (15)
C200.037 (2)0.045 (2)0.0331 (19)0.0087 (17)0.0019 (16)0.0004 (16)
C210.0291 (19)0.057 (2)0.040 (2)0.0065 (18)0.0025 (16)0.0038 (18)
C220.031 (2)0.051 (2)0.040 (2)0.0043 (17)0.0106 (16)0.0003 (17)
C230.0303 (19)0.0327 (19)0.0294 (17)0.0007 (15)0.0082 (14)0.0030 (15)
Geometric parameters (Å, º) top
Ni1—O11.815 (2)C7—C81.376 (5)
Ni1—N11.887 (3)C7—H70.9300
Ni1—N21.850 (2)C8—C91.373 (5)
Ni1—N31.898 (3)C8—H80.9300
N1—C121.345 (4)C9—H90.9300
N1—C161.345 (4)C10—C111.543 (4)
N2—C171.298 (4)C11—C121.517 (4)
N2—C111.498 (4)C12—C131.385 (4)
N3—N41.197 (4)C13—C141.374 (4)
N4—N51.148 (4)C13—H130.9300
N6—C11.340 (4)C14—C151.374 (5)
N6—C51.343 (5)C14—H140.9300
N7—C101.335 (4)C15—C161.370 (4)
N7—C91.339 (4)C15—H150.9300
O1—C231.309 (3)C16—H160.9300
C1—C21.382 (4)C17—C181.413 (4)
C1—C111.540 (4)C17—H170.9300
C2—C31.380 (5)C18—C231.407 (4)
C2—H20.9300C18—C191.414 (4)
C3—C41.360 (5)C19—C201.364 (4)
C3—H30.9300C19—H190.9300
C4—C51.373 (5)C20—C211.390 (5)
C4—H40.9300C20—H200.9300
C5—H50.9300C21—C221.366 (4)
C6—C101.377 (4)C21—H210.9300
C6—C71.381 (4)C22—C231.401 (4)
C6—H60.9300C22—H220.9300
O1—Ni1—N295.71 (10)N7—C10—C11113.6 (3)
O1—Ni1—N1178.50 (11)C6—C10—C11122.9 (3)
N2—Ni1—N185.09 (11)N2—C11—C12105.8 (2)
O1—Ni1—N387.79 (11)N2—C11—C1111.3 (2)
N2—Ni1—N3175.69 (13)C12—C11—C1107.1 (2)
N1—Ni1—N391.46 (12)N2—C11—C10107.8 (2)
C12—N1—C16118.6 (3)C12—C11—C10109.7 (3)
C12—N1—Ni1116.0 (2)C1—C11—C10114.7 (3)
C16—N1—Ni1125.4 (2)N1—C12—C13121.3 (3)
C17—N2—C11117.7 (3)N1—C12—C11116.0 (3)
C17—N2—Ni1125.6 (2)C13—C12—C11122.8 (3)
C11—N2—Ni1116.70 (19)C14—C13—C12119.6 (3)
N4—N3—Ni1121.0 (2)C14—C13—H13120.2
N5—N4—N3175.9 (4)C12—C13—H13120.2
C1—N6—C5116.8 (3)C13—C14—C15119.0 (3)
C10—N7—C9116.9 (3)C13—C14—H14120.5
C23—O1—Ni1127.6 (2)C15—C14—H14120.5
N6—C1—C2122.5 (3)C16—C15—C14119.1 (3)
N6—C1—C11113.4 (3)C16—C15—H15120.5
C2—C1—C11123.9 (3)C14—C15—H15120.5
C3—C2—C1118.9 (4)N1—C16—C15122.5 (3)
C3—C2—H2120.5N1—C16—H16118.8
C1—C2—H2120.5C15—C16—H16118.8
C4—C3—C2119.4 (4)N2—C17—C18125.3 (3)
C4—C3—H3120.3N2—C17—H17117.3
C2—C3—H3120.3C18—C17—H17117.3
C3—C4—C5118.3 (4)C23—C18—C17122.0 (3)
C3—C4—H4120.8C23—C18—C19119.0 (3)
C5—C4—H4120.8C17—C18—C19119.0 (3)
N6—C5—C4124.0 (4)C20—C19—C18121.3 (3)
N6—C5—H5118.0C20—C19—H19119.3
C4—C5—H5118.0C18—C19—H19119.3
C10—C6—C7118.8 (3)C19—C20—C21119.1 (3)
C10—C6—H6120.6C19—C20—H20120.5
C7—C6—H6120.6C21—C20—H20120.5
C8—C7—C6118.6 (3)C22—C21—C20121.2 (3)
C8—C7—H7120.7C22—C21—H21119.4
C6—C7—H7120.7C20—C21—H21119.4
C9—C8—C7118.7 (3)C21—C22—C23120.9 (3)
C9—C8—H8120.7C21—C22—H22119.6
C7—C8—H8120.7C23—C22—H22119.6
N7—C9—C8123.7 (4)O1—C23—C22117.7 (3)
N7—C9—H9118.2O1—C23—C18123.8 (3)
C8—C9—H9118.2C22—C23—C18118.5 (3)
N7—C10—C6123.3 (3)
N2—Ni1—N1—C123.4 (2)N7—C10—C11—N280.5 (3)
N3—Ni1—N1—C12174.0 (2)C6—C10—C11—N295.5 (3)
N2—Ni1—N1—C16177.2 (3)N7—C10—C11—C1234.3 (4)
N3—Ni1—N1—C165.4 (3)C6—C10—C11—C12149.7 (3)
O1—Ni1—N2—C171.9 (3)N7—C10—C11—C1154.9 (3)
N1—Ni1—N2—C17176.8 (3)C6—C10—C11—C129.1 (4)
O1—Ni1—N2—C11175.1 (2)C16—N1—C12—C130.2 (4)
N1—Ni1—N2—C116.2 (2)Ni1—N1—C12—C13179.2 (2)
O1—Ni1—N3—N421.3 (3)C16—N1—C12—C11179.3 (3)
N1—Ni1—N3—N4160.0 (3)Ni1—N1—C12—C110.1 (3)
N2—Ni1—O1—C231.5 (3)N2—C11—C12—N14.5 (3)
N3—Ni1—O1—C23179.0 (3)C1—C11—C12—N1114.3 (3)
C5—N6—C1—C23.0 (5)C10—C11—C12—N1120.6 (3)
C5—N6—C1—C11173.1 (3)N2—C11—C12—C13176.4 (3)
N6—C1—C2—C31.4 (5)C1—C11—C12—C1364.8 (4)
C11—C1—C2—C3174.3 (3)C10—C11—C12—C1360.3 (4)
C1—C2—C3—C41.0 (5)N1—C12—C13—C140.1 (5)
C2—C3—C4—C51.6 (5)C11—C12—C13—C14179.2 (3)
C1—N6—C5—C42.5 (5)C12—C13—C14—C150.1 (5)
C3—C4—C5—N60.2 (6)C13—C14—C15—C160.3 (5)
C10—C6—C7—C81.9 (5)C12—N1—C16—C150.0 (5)
C6—C7—C8—C91.8 (6)Ni1—N1—C16—C15179.4 (2)
C10—N7—C9—C80.9 (5)C14—C15—C16—N10.3 (5)
C7—C8—C9—N71.4 (6)C11—N2—C17—C18175.7 (3)
C9—N7—C10—C61.0 (5)Ni1—N2—C17—C181.3 (4)
C9—N7—C10—C11175.0 (3)N2—C17—C18—C230.3 (5)
C7—C6—C10—N71.5 (5)N2—C17—C18—C19178.9 (3)
C7—C6—C10—C11174.1 (3)C23—C18—C19—C201.0 (4)
C17—N2—C11—C12175.5 (2)C17—C18—C19—C20177.6 (3)
Ni1—N2—C11—C127.3 (3)C18—C19—C20—C210.6 (5)
C17—N2—C11—C168.4 (3)C19—C20—C21—C220.2 (5)
Ni1—N2—C11—C1108.8 (2)C20—C21—C22—C230.3 (5)
C17—N2—C11—C1058.2 (3)Ni1—O1—C23—C22178.8 (2)
Ni1—N2—C11—C10124.6 (2)Ni1—O1—C23—C180.5 (4)
N6—C1—C11—N2176.2 (2)C21—C22—C23—O1179.0 (3)
C2—C1—C11—N27.8 (4)C21—C22—C23—C180.7 (5)
N6—C1—C11—C1268.6 (3)C17—C18—C23—O10.7 (5)
C2—C1—C11—C12107.5 (3)C19—C18—C23—O1179.3 (3)
N6—C1—C11—C1053.4 (3)C17—C18—C23—C22177.5 (3)
C2—C1—C11—C10130.5 (3)C19—C18—C23—C221.0 (4)

Experimental details

Crystal data
Chemical formula[Ni(C23H17N4O)(N3)]
Mr466.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.7977 (12), 14.9156 (16), 12.7543 (14)
β (°) 103.044 (2)
V3)2001.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.906, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
14754, 3723, 2616
Rint0.081
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.097, 0.94
No. of reflections3723
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.63

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ni1—O11.815 (2)Ni1—N21.850 (2)
Ni1—N11.887 (3)Ni1—N31.898 (3)
O1—Ni1—N295.71 (10)O1—Ni1—N387.79 (11)
O1—Ni1—N1178.50 (11)N2—Ni1—N3175.69 (13)
N2—Ni1—N185.09 (11)N1—Ni1—N391.46 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds