Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cd2(C12H17N2O)2(C2H3O2)2]·H2O, the binuclear complex mol­ecule as well as the water mol­ecule occupy special positions on the same twofold axis. The CdII atom has a severely distorted octa­hedral coordination formed by two deprotonated bridging phenol O atoms, the imine and amine N atoms of the Schiff base and two O atoms of the chelating acetate group. The water H atom takes part in a hydrogen bond involving one of the acetate O atoms as an acceptor. Each water mol­ecule forms two such bonds, thus producing isolated 1:1 complex mol­ecule–water aggregates in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052105/ya2057sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052105/ya2057Isup2.hkl
Contains datablock I

CCDC reference: 667227

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.022
  • wR factor = 0.046
  • Data-to-parameter ratio = 22.2

checkCIF/PLATON results

No syntax errors found




Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 - O2 .. 13.09 su
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT230_ALERT_2_C Hirshfeld Test Diff for C1 - C6 .. 5.52 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cd1
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 29.30 From the CIF: _reflns_number_total 4203 Count of symmetry unique reflns 2411 Completeness (_total/calc) 174.33% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1792 Fraction of Friedel pairs measured 0.743 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.04
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently there has been a growing interest in the synthesis of transition metal complexes with multidentate Schiff base ligands (Ray et al., 2004; Saha et al., 2003). Such ligands can accommodate one, two or more metal centres and thus may provide the basis for modeling of active sites of biological systems (Ikawa et al., 1993; Erxleben, 2001). Up to now many Cu(II) complexes with tridentate Schiff bases have been synthesized (Mukherjee et al., 2001; Mukherjee et al., 2002). In this paper, we report a binuclear Cd(II) complex with tridentate Schiff base N-(salicylidene)-3-dimethylaminopropylamine ligand (Fig. 1).

The crystal structure of (I) is built of binuclear neutral cadmium complexes and lattice water molecules. The complex dimeric molecule [Cd(C12H17N2O)(CH3COO)]2 occupies a special position on the twofold axis. Each CdII atom has a severely distorted octahedral coordination formed by two deprotonated bridging phenolic O atoms, imine and amine N atoms of the Schiff base, and two oxygen atoms of the chelate acetato group. The Cd1···Cd1i separation is 3.519 (6) Å and the Cd1—O1—Cd1i angle is equal to 101.40 (6)° [symmetry code (i): 0.5 - y, 0.5 - x, 1 - z].

The water H atom takes part in the H-bond involving one of the acetate oxygen atoms, O3, as an acceptor (Table 2). The water molecule, therefore, participates in two such H-bonds with one and the same complex molecule, thus producing isolated 1:1 complex molecule-water molecule aggregates in crystal.

Related literature top

For recent studies on complexes of multidentate Schiff bases, including their application for the modeling of active sites of biological systems, see: Erxleben (2001); Ikawa et al. (1993); Mukherjee et al. (2001); Mukherjee et al. (2002); Ray et al. (2004); Saha et al. (2003)

Experimental top

The Schiff base ligand N-(salicylidene)-3-dimethylaminopropylamine was prepared by refluxing 3-dimethylamino-1-propylamine (1.0 mmol) and salicyladehyde (1.0 mmol) in ethyl alcohol (10 ml) for half an hour. Cd(CH3COO)2.2H2O (1.0 mmol) in 10 ml of ethyl alcohol was added to the ethyl alcohol solution of the ligand (1.0 mmol). A yellow mixture was obtained by refluxing for about an hour, then allowed to stand at room temperature. After several weeks yellow crystals suitable for X-ray diffraction were collected (yield 51%).

Refinement top

All H atoms bonded to C atoms were positioned geometrically [aromatic C—H 0.93 Å and aliphatic C—H = 0.97(methyl), 0.96(methylene) or 0.93(methylidyne) Å], and the water H atom was located in the difference Fourier map. All H atoms were included in the refinement in the riding motion approximation with Uiso(H) = 1.5Ueq(C,O) for methyl and water H atoms and Uiso(H) = 1.2Ueq(C)] for all other H atoms.

Structure description top

Recently there has been a growing interest in the synthesis of transition metal complexes with multidentate Schiff base ligands (Ray et al., 2004; Saha et al., 2003). Such ligands can accommodate one, two or more metal centres and thus may provide the basis for modeling of active sites of biological systems (Ikawa et al., 1993; Erxleben, 2001). Up to now many Cu(II) complexes with tridentate Schiff bases have been synthesized (Mukherjee et al., 2001; Mukherjee et al., 2002). In this paper, we report a binuclear Cd(II) complex with tridentate Schiff base N-(salicylidene)-3-dimethylaminopropylamine ligand (Fig. 1).

The crystal structure of (I) is built of binuclear neutral cadmium complexes and lattice water molecules. The complex dimeric molecule [Cd(C12H17N2O)(CH3COO)]2 occupies a special position on the twofold axis. Each CdII atom has a severely distorted octahedral coordination formed by two deprotonated bridging phenolic O atoms, imine and amine N atoms of the Schiff base, and two oxygen atoms of the chelate acetato group. The Cd1···Cd1i separation is 3.519 (6) Å and the Cd1—O1—Cd1i angle is equal to 101.40 (6)° [symmetry code (i): 0.5 - y, 0.5 - x, 1 - z].

The water H atom takes part in the H-bond involving one of the acetate oxygen atoms, O3, as an acceptor (Table 2). The water molecule, therefore, participates in two such H-bonds with one and the same complex molecule, thus producing isolated 1:1 complex molecule-water molecule aggregates in crystal.

For recent studies on complexes of multidentate Schiff bases, including their application for the modeling of active sites of biological systems, see: Erxleben (2001); Ikawa et al. (1993); Mukherjee et al. (2001); Mukherjee et al. (2002); Ray et al. (2004); Saha et al. (2003)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The complex molecule-water molecule aggregate in the structure of the title compound; the unlabeled atoms are derived by the (-y + 1/2, -x + 1/2, -z + 1) symmetry transformation. Displacement ellipsoids are drawn at the 30% probability level. The H atoms with the exception of that of the water molecule are omitted for clarity; the H-bonds are represented as dashed lines.
Bis(µ-2-{[3-(dimethylamino)propyl]iminomethyl}phenolato- κ4N,N',O:O)bis[(acetato-κ2O,O')cadmium(II)] monohydrate top
Crystal data top
[Cd2(C12H17N2O)2(C2H3O2)2]·H2ODx = 1.598 Mg m3
Mr = 771.46Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4b2Cell parameters from 5789 reflections
Hall symbol: P -4 -2abθ = 1.9–29.3°
a = 17.543 (3) ŵ = 1.37 mm1
c = 10.420 (3) ÅT = 293 K
V = 3206.8 (11) Å3Block, yellow
Z = 40.26 × 0.18 × 0.15 mm
F(000) = 1560
Data collection top
Bruker APEXII area-detector
diffractometer
4203 independent reflections
Radiation source: fine-focus sealed tube3543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2324
Tmin = 0.716, Tmax = 0.820k = 2324
21724 measured reflectionsl = 1410
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0216P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4203 reflectionsΔρmax = 0.23 e Å3
189 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1788 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (18)
Crystal data top
[Cd2(C12H17N2O)2(C2H3O2)2]·H2OZ = 4
Mr = 771.46Mo Kα radiation
Tetragonal, P4b2µ = 1.37 mm1
a = 17.543 (3) ÅT = 293 K
c = 10.420 (3) Å0.26 × 0.18 × 0.15 mm
V = 3206.8 (11) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3543 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.820Rint = 0.030
21724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.24 e Å3
4203 reflectionsAbsolute structure: Flack (1983), 1788 Friedel pairs
189 parametersAbsolute structure parameter: 0.014 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.231751 (8)0.354386 (8)0.634193 (16)0.04198 (5)
O10.22984 (9)0.36177 (8)0.41579 (14)0.0451 (3)
O20.29307 (13)0.32036 (13)0.83507 (19)0.0755 (6)
O30.32810 (12)0.26684 (11)0.6582 (2)0.0729 (6)
O1W0.35631 (13)0.14369 (13)0.50000.1164 (15)
H1W0.35240.17830.54890.175*
N10.30084 (11)0.46347 (10)0.60836 (19)0.0480 (5)
N20.14606 (12)0.43888 (13)0.74563 (19)0.0531 (5)
C10.32474 (12)0.45900 (11)0.3765 (2)0.0428 (5)
C20.27952 (12)0.39507 (12)0.3380 (2)0.0409 (5)
C30.28801 (14)0.37069 (13)0.2108 (3)0.0472 (6)
H3A0.26100.32800.18380.057*
C40.33442 (13)0.40717 (14)0.1246 (3)0.0529 (6)
H4A0.33780.38910.04090.063*
C50.37623 (15)0.47056 (14)0.1605 (3)0.0568 (7)
H5A0.40670.49620.10160.068*
C60.37144 (13)0.49453 (15)0.2855 (2)0.0543 (6)
H6A0.40050.53620.31090.065*
C70.32879 (13)0.49019 (14)0.5056 (3)0.0488 (6)
H7A0.35540.53580.51380.059*
C80.31653 (15)0.50458 (18)0.7280 (2)0.0630 (8)
H8A0.35490.54320.71200.076*
H8B0.33690.46920.79090.076*
C90.24522 (17)0.54242 (17)0.7824 (3)0.0687 (8)
H9A0.22120.57180.71470.082*
H9B0.26050.57780.84910.082*
C100.18630 (15)0.48761 (16)0.8382 (2)0.0650 (8)
H10A0.21170.45500.90000.078*
H10B0.14870.51730.88470.078*
C110.08785 (16)0.39618 (17)0.8156 (3)0.0764 (9)
H11A0.05210.43110.85330.115*
H11B0.11160.36660.88210.115*
H11C0.06160.36280.75760.115*
C120.10697 (15)0.48511 (18)0.6487 (3)0.0777 (8)
H12A0.07410.52110.69040.116*
H12B0.07720.45260.59410.116*
H12C0.14400.51190.59810.116*
C130.33258 (17)0.27384 (17)0.7767 (3)0.0612 (7)
C140.38725 (18)0.22233 (18)0.8470 (4)0.0854 (10)
H14A0.43680.24540.84890.128*
H14B0.39020.17410.80380.128*
H14C0.36960.21470.93330.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04226 (9)0.04557 (9)0.03810 (8)0.00513 (7)0.00350 (8)0.00795 (8)
O10.0479 (10)0.0484 (10)0.0390 (7)0.0141 (7)0.0023 (7)0.0046 (7)
O20.0807 (13)0.0862 (15)0.0596 (14)0.0015 (12)0.0111 (11)0.0070 (11)
O30.0770 (13)0.0799 (14)0.0617 (14)0.0208 (10)0.0223 (11)0.0109 (11)
O1W0.126 (2)0.126 (2)0.096 (3)0.060 (2)0.010 (2)0.010 (2)
N10.0443 (10)0.0502 (10)0.0495 (13)0.0073 (8)0.0016 (9)0.0160 (9)
N20.0466 (12)0.0550 (13)0.0577 (13)0.0027 (9)0.0051 (9)0.0113 (10)
C10.0417 (10)0.0389 (11)0.0477 (12)0.0012 (8)0.0027 (11)0.0012 (11)
C20.0401 (11)0.0407 (12)0.0420 (14)0.0019 (9)0.0041 (9)0.0015 (9)
C30.0491 (13)0.0496 (14)0.0429 (14)0.0043 (10)0.0050 (11)0.0025 (11)
C40.0545 (13)0.0636 (15)0.0405 (13)0.0120 (11)0.0002 (12)0.0050 (13)
C50.0582 (14)0.0570 (15)0.0553 (17)0.0029 (12)0.0090 (12)0.0120 (12)
C60.0554 (15)0.0452 (14)0.0623 (15)0.0043 (11)0.0012 (12)0.0029 (13)
C70.0456 (14)0.0402 (13)0.0604 (15)0.0063 (11)0.0027 (11)0.0089 (12)
C80.0590 (16)0.0711 (19)0.0590 (16)0.0209 (14)0.0052 (13)0.0311 (15)
C90.0747 (19)0.0615 (17)0.0698 (19)0.0139 (13)0.0097 (16)0.0324 (15)
C100.0618 (16)0.0729 (18)0.0603 (18)0.0035 (13)0.0069 (13)0.0263 (14)
C110.0646 (17)0.0703 (19)0.094 (2)0.0121 (15)0.0305 (17)0.0211 (16)
C120.0677 (17)0.0829 (19)0.0824 (19)0.0123 (15)0.0164 (17)0.0101 (19)
C130.0589 (17)0.0632 (19)0.0614 (19)0.0164 (14)0.0203 (14)0.0033 (15)
C140.087 (2)0.0793 (19)0.090 (3)0.0130 (16)0.036 (2)0.0237 (19)
Geometric parameters (Å, º) top
Cd1—O1i2.2685 (14)C4—H4A0.9300
Cd1—O12.2797 (16)C5—C61.371 (3)
Cd1—N12.2812 (19)C5—H5A0.9300
Cd1—O32.2976 (19)C6—H6A0.9300
Cd1—N22.409 (2)C7—H7A0.9300
Cd1—O22.428 (2)C8—C91.525 (4)
Cd1—C132.707 (3)C8—H8A0.9700
O1—C21.326 (3)C8—H8B0.9700
O1—Cd1i2.2685 (14)C9—C101.527 (4)
O2—C131.232 (4)C9—H9A0.9700
O3—C131.243 (4)C9—H9B0.9700
O1W—H1W0.7950C10—H10A0.9700
N1—C71.268 (3)C10—H10B0.9700
N1—C81.466 (3)C11—H11A0.9600
N2—C111.462 (3)C11—H11B0.9600
N2—C121.466 (3)C11—H11C0.9600
N2—C101.470 (3)C12—H12A0.9600
C1—C61.400 (3)C12—H12B0.9600
C1—C21.431 (3)C12—H12C0.9600
C1—C71.454 (3)C13—C141.508 (4)
C2—C31.400 (3)C14—H14A0.9600
C3—C41.371 (4)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.384 (3)
O1i—Cd1—O178.30 (6)C4—C5—H5A121.0
O1i—Cd1—N1154.63 (6)C5—C6—C1122.9 (2)
O1—Cd1—N180.93 (6)C5—C6—H6A118.6
O1i—Cd1—O396.99 (6)C1—C6—H6A118.6
O1—Cd1—O399.08 (7)N1—C7—C1128.6 (2)
N1—Cd1—O3100.53 (7)N1—C7—H7A115.7
O1i—Cd1—N293.45 (6)C1—C7—H7A115.7
O1—Cd1—N2115.91 (7)N1—C8—C9112.1 (2)
N1—Cd1—N282.66 (7)N1—C8—H8A109.2
O3—Cd1—N2144.85 (8)C9—C8—H8A109.2
O1i—Cd1—O2110.99 (6)N1—C8—H8B109.2
O1—Cd1—O2151.78 (7)C9—C8—H8B109.2
N1—Cd1—O294.16 (7)H8A—C8—H8B107.9
O3—Cd1—O254.24 (8)C8—C9—C10115.0 (2)
N2—Cd1—O290.70 (8)C8—C9—H9A108.5
O1i—Cd1—C13104.98 (7)C10—C9—H9A108.5
O1—Cd1—C13125.93 (9)C8—C9—H9B108.5
N1—Cd1—C1398.94 (7)C10—C9—H9B108.5
O3—Cd1—C1327.20 (9)H9A—C9—H9B107.5
N2—Cd1—C13117.67 (9)N2—C10—C9116.2 (2)
O2—Cd1—C1327.06 (8)N2—C10—H10A108.2
C2—O1—Cd1i127.33 (13)C9—C10—H10A108.2
C2—O1—Cd1128.73 (13)N2—C10—H10B108.2
Cd1i—O1—Cd1101.40 (6)C9—C10—H10B108.2
C13—O2—Cd189.22 (17)H10A—C10—H10B107.4
C13—O3—Cd195.09 (19)N2—C11—H11A109.5
C7—N1—C8117.6 (2)N2—C11—H11B109.5
C7—N1—Cd1127.97 (16)H11A—C11—H11B109.5
C8—N1—Cd1114.34 (16)N2—C11—H11C109.5
C11—N2—C12107.5 (2)H11A—C11—H11C109.5
C11—N2—C10107.8 (2)H11B—C11—H11C109.5
C12—N2—C10110.8 (2)N2—C12—H12A109.5
C11—N2—Cd1111.17 (16)N2—C12—H12B109.5
C12—N2—Cd1107.47 (15)H12A—C12—H12B109.5
C10—N2—Cd1112.01 (16)N2—C12—H12C109.5
C6—C1—C2118.9 (2)H12A—C12—H12C109.5
C6—C1—C7115.5 (2)H12B—C12—H12C109.5
C2—C1—C7125.5 (2)O2—C13—O3121.4 (3)
O1—C2—C3120.9 (2)O2—C13—C14121.0 (3)
O1—C2—C1122.6 (2)O3—C13—C14117.6 (3)
C3—C2—C1116.4 (2)O2—C13—Cd163.73 (15)
C4—C3—C2122.7 (2)O3—C13—Cd157.70 (15)
C4—C3—H3A118.6C14—C13—Cd1174.2 (2)
C2—C3—H3A118.6C13—C14—H14A109.5
C3—C4—C5120.8 (3)C13—C14—H14B109.5
C3—C4—H4A119.6H14A—C14—H14B109.5
C5—C4—H4A119.6C13—C14—H14C109.5
C6—C5—C4118.1 (2)H14A—C14—H14C109.5
C6—C5—H5A121.0H14B—C14—H14C109.5
O1i—Cd1—O1—C2168.64 (14)O1i—Cd1—N2—C10157.39 (17)
N1—Cd1—O1—C226.00 (17)O1—Cd1—N2—C10123.95 (16)
O3—Cd1—O1—C273.32 (17)N1—Cd1—N2—C1047.79 (17)
N2—Cd1—O1—C2103.21 (17)O3—Cd1—N2—C1050.1 (2)
O2—Cd1—O1—C255.8 (2)O2—Cd1—N2—C1046.31 (17)
C13—Cd1—O1—C268.51 (19)C13—Cd1—N2—C1048.49 (19)
O1i—Cd1—O1—Cd1i5.94 (8)Cd1i—O1—C2—C34.0 (3)
N1—Cd1—O1—Cd1i171.30 (8)Cd1—O1—C2—C3154.54 (16)
O3—Cd1—O1—Cd1i89.38 (8)Cd1i—O1—C2—C1173.45 (14)
N2—Cd1—O1—Cd1i94.09 (8)Cd1—O1—C2—C128.1 (3)
O2—Cd1—O1—Cd1i106.87 (13)C6—C1—C2—O1175.0 (2)
C13—Cd1—O1—Cd1i94.19 (9)C7—C1—C2—O17.0 (3)
O1i—Cd1—O2—C1381.80 (18)C6—C1—C2—C32.5 (3)
O1—Cd1—O2—C1323.0 (2)C7—C1—C2—C3175.5 (2)
N1—Cd1—O2—C13101.55 (17)O1—C2—C3—C4174.9 (2)
O3—Cd1—O2—C131.56 (17)C1—C2—C3—C42.6 (3)
N2—Cd1—O2—C13175.76 (17)C2—C3—C4—C50.5 (4)
O1i—Cd1—O3—C13109.33 (18)C3—C4—C5—C61.7 (4)
O1—Cd1—O3—C13171.47 (17)C4—C5—C6—C11.8 (4)
N1—Cd1—O3—C1389.09 (18)C2—C1—C6—C50.3 (4)
N2—Cd1—O3—C133.1 (3)C7—C1—C6—C5177.8 (2)
O2—Cd1—O3—C131.55 (16)C8—N1—C7—C1177.0 (2)
O1i—Cd1—N1—C747.2 (3)Cd1—N1—C7—C10.1 (4)
O1—Cd1—N1—C711.9 (2)C6—C1—C7—N1170.0 (2)
O3—Cd1—N1—C785.7 (2)C2—C1—C7—N18.0 (4)
N2—Cd1—N1—C7129.7 (2)C7—N1—C8—C9111.1 (3)
O2—Cd1—N1—C7140.1 (2)Cd1—N1—C8—C971.4 (3)
C13—Cd1—N1—C7113.3 (2)N1—C8—C9—C1071.1 (3)
O1i—Cd1—N1—C8135.62 (19)C11—N2—C10—C9174.9 (3)
O1—Cd1—N1—C8170.92 (19)C12—N2—C10—C957.5 (3)
O3—Cd1—N1—C891.45 (18)Cd1—N2—C10—C962.5 (3)
N2—Cd1—N1—C853.10 (18)C8—C9—C10—N269.1 (3)
O2—Cd1—N1—C837.07 (19)Cd1—O2—C13—O32.7 (3)
C13—Cd1—N1—C863.89 (19)Cd1—O2—C13—C14176.2 (2)
O1i—Cd1—N2—C1136.70 (19)Cd1—O3—C13—O22.9 (3)
O1—Cd1—N2—C11115.36 (18)Cd1—O3—C13—C14176.1 (2)
N1—Cd1—N2—C11168.48 (19)O1i—Cd1—C13—O2106.95 (17)
O3—Cd1—N2—C1170.6 (2)O1—Cd1—C13—O2166.80 (15)
O2—Cd1—N2—C1174.38 (19)N1—Cd1—C13—O281.57 (17)
C13—Cd1—N2—C1172.2 (2)O3—Cd1—C13—O2177.2 (3)
O1i—Cd1—N2—C1280.67 (17)N2—Cd1—C13—O24.79 (19)
O1—Cd1—N2—C122.01 (18)O1i—Cd1—C13—O375.83 (18)
N1—Cd1—N2—C1274.14 (17)O1—Cd1—C13—O310.4 (2)
O3—Cd1—N2—C12172.03 (16)N1—Cd1—C13—O395.66 (18)
O2—Cd1—N2—C12168.25 (17)N2—Cd1—C13—O3177.98 (17)
C13—Cd1—N2—C12170.43 (16)O2—Cd1—C13—O3177.2 (3)
Symmetry code: (i) y+1/2, x+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O30.801.972.762 (3)172

Experimental details

Crystal data
Chemical formula[Cd2(C12H17N2O)2(C2H3O2)2]·H2O
Mr771.46
Crystal system, space groupTetragonal, P4b2
Temperature (K)293
a, c (Å)17.543 (3), 10.420 (3)
V3)3206.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.26 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.716, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
21724, 4203, 3543
Rint0.030
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.02
No. of reflections4203
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24
Absolute structureFlack (1983), 1788 Friedel pairs
Absolute structure parameter0.014 (18)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
Cd1—O1i2.2685 (14)Cd1—O32.2976 (19)
Cd1—O12.2797 (16)Cd1—N22.409 (2)
Cd1—N12.2812 (19)Cd1—O22.428 (2)
O1i—Cd1—O178.30 (6)N1—Cd1—N282.66 (7)
O1i—Cd1—N1154.63 (6)O3—Cd1—N2144.85 (8)
O1—Cd1—N180.93 (6)O1i—Cd1—O2110.99 (6)
O1i—Cd1—O396.99 (6)O1—Cd1—O2151.78 (7)
O1—Cd1—O399.08 (7)N1—Cd1—O294.16 (7)
N1—Cd1—O3100.53 (7)O3—Cd1—O254.24 (8)
O1i—Cd1—N293.45 (6)N2—Cd1—O290.70 (8)
O1—Cd1—N2115.91 (7)
Symmetry code: (i) y+1/2, x+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O30.801.972.762 (3)171.7
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds