Download citation
Download citation
link to html
The title compound, C15H21N2O+·Cl·0.5H2O, crystallizes with two cations, two anions and one water molecule in the asymmetric unit. Both the piperidine and cyclo­hexane rings adopt chair conformations and the oxime groups are basically planar. The cyclo­hexane ring is equatorially oriented with respect to the piperidine ring. The crystal structure is stabilized by N—H...Cl, C—H...Cl, C—H...O, N—H...N and O—H...Cl hydrogen bonds. A water mol­ecule that bridges the two crystallographically independent chloride anions via hydrogen bonds is disordered over two chemically equivalent sites, with occupancy factors of ca 0.9:0.1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052245/zl2073sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052245/zl2073Isup2.hkl
Contains datablock I

CCDC reference: 667437

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.028
  • wR factor = 0.075
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.743 0.956 Tmin(prime) and Tmax expected: 0.931 0.956 RR(prime) = 0.798 Please check that your absorption correction is appropriate. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.80 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 25.00 Perc. PLAT411_ALERT_2_C Short Inter H...H Contact H8A1 .. H8B2 .. 2.11 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 24
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C15 H22 Cl1 N2 O1.5 Atom count from _chemical_formula_moiety:C15 H23 Cl1 N2 O2 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.03 From the CIF: _reflns_number_total 4758 Count of symmetry unique reflns 2822 Completeness (_total/calc) 168.60% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1936 Fraction of Friedel pairs measured 0.686 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT792_ALERT_1_G Check the Absolute Configuration of C2A = ... R PLAT792_ALERT_1_G Check the Absolute Configuration of C2B = ... R PLAT792_ALERT_1_G Check the Absolute Configuration of C9A = ... R PLAT792_ALERT_1_G Check the Absolute Configuration of C9B = ... R PLAT792_ALERT_1_G Check the Absolute Configuration of C10A = ... S PLAT792_ALERT_1_G Check the Absolute Configuration of C10B = ... S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 8
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 10 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound has been analysed as part of our crystallographic studies on substituted decahydroquinolines. Thiruvalluvar et al. (1995) have reported a crystal structure of N-benzoyl-2-phenyldecahydroquinolin-4-one, wherein the piperidine ring adopts a flexible twist conformation. The title compound, Fig. 1., crystallizes with two molecules per asymmetric unit. Both molecules are essentially identical, the r.m.s. deviation of an overlay of all non-hydrogen atoms is only 0.086 Å. The torsion angles (C8—C9—C10—C4 = -179.5 (1)° for molecule A and -178.1 (1)° for molecule B) confirm the trans fusion of the piperidine and cyclohexane rings in both independent molecules. It is evident from the ring torsion angles that the piperidine and cyclohexane rings are both in a chair conformation. The oxime moieties are essentially planar with r.m.s. deviations of only 0.024 (1) Å. The phenyl rings at C2 are equatorially oriented with respect to the piperidine rings. The crystal structure is stabilized by intramolecular N—H···Cl, C—H···Cl, and C—H···O and by intermolecular N—H···N, N—H···Cl, and O—H···Cl hydrogen bonds., see Fig. 2 and the hydrogen bonding table. A water molecule that bridges via hydrogen bonds the two crystallographically independent chlorine anions is disordered over two chemically equivalent sites. Its occupancy ratio refined to 0.905:0.095.

Related literature top

For a related crystal structure, see Thiruvalluvar et al., 1995. For preparation of the title compound, see Baliah et al., 1978.

Experimental top

The title compound was prepared following the procedure of Baliah et al. (1978). Crystals suitable for X-ray diffraction were grown by slow evaporation of an ethanolic solution.

Refinement top

The solvate water molecule is disordered over two positions with an occupancy rate of 0.905 (3) to 0.095 (3). The ADPs of both oxygen atoms were set to be identical. The water hydrogen atoms were located in difference density Fourier maps and the O—H distances were restrained to be 0.84 (2) Å. To allow for a stable and meaningful refinement of the H atoms of the less occupied water molecule the hydrogen bonding distances to both chlorine atoms were restrained to be each the same in both moieties, as were the H···H distances in both water molecules. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms with N—H = 0.90 Å, C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso = 1.2–1.5 Ueq(parent atom). Hydroxyl H atoms were allowed to rotate, but not to tip, to best fit the experimental electron density. A damping factor (damp 400 15 in the final refinement cycles) was applied to avoid large and erratic displacements of the hydrogen atoms of the less occupied water molecule.

Structure description top

The title compound has been analysed as part of our crystallographic studies on substituted decahydroquinolines. Thiruvalluvar et al. (1995) have reported a crystal structure of N-benzoyl-2-phenyldecahydroquinolin-4-one, wherein the piperidine ring adopts a flexible twist conformation. The title compound, Fig. 1., crystallizes with two molecules per asymmetric unit. Both molecules are essentially identical, the r.m.s. deviation of an overlay of all non-hydrogen atoms is only 0.086 Å. The torsion angles (C8—C9—C10—C4 = -179.5 (1)° for molecule A and -178.1 (1)° for molecule B) confirm the trans fusion of the piperidine and cyclohexane rings in both independent molecules. It is evident from the ring torsion angles that the piperidine and cyclohexane rings are both in a chair conformation. The oxime moieties are essentially planar with r.m.s. deviations of only 0.024 (1) Å. The phenyl rings at C2 are equatorially oriented with respect to the piperidine rings. The crystal structure is stabilized by intramolecular N—H···Cl, C—H···Cl, and C—H···O and by intermolecular N—H···N, N—H···Cl, and O—H···Cl hydrogen bonds., see Fig. 2 and the hydrogen bonding table. A water molecule that bridges via hydrogen bonds the two crystallographically independent chlorine anions is disordered over two chemically equivalent sites. Its occupancy ratio refined to 0.905:0.095.

For a related crystal structure, see Thiruvalluvar et al., 1995. For preparation of the title compound, see Baliah et al., 1978.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004; data reduction: SAINT-NT (Bruker, 2004); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are shown as small spheres of arbitray radii. The minor component water molecule is omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the title molecule, viewed down the a axis. Hydrogen bonds are shown as dashed lines. The minor component water molecule is omitted for clarity.
4-Hydroxyimino-2-phenylperhydroquinolinium chloride hemihydrate top
Crystal data top
C15H21N2O+·Cl·0.5H2ODx = 1.262 Mg m3
Mr = 289.81Melting point: 521.5 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7599 reflections
a = 13.1733 (4) Åθ = 1.9–25.0°
b = 18.2824 (5) ŵ = 0.25 mm1
c = 12.6656 (4) ÅT = 293 K
V = 3050.38 (16) Å3Block, colourless
Z = 80.28 × 0.18 × 0.18 mm
F(000) = 1240
Data collection top
Bruker APEXII
diffractometer
4758 independent reflections
Radiation source: fine-focus sealed tube4335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1115
Tmin = 0.743, Tmax = 0.956k = 2121
15501 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.4811P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.021
4758 reflectionsΔρmax = 0.16 e Å3
370 parametersΔρmin = 0.14 e Å3
8 restraintsAbsolute structure: Flack (1983), 1936 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C15H21N2O+·Cl·0.5H2OV = 3050.38 (16) Å3
Mr = 289.81Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 13.1733 (4) ŵ = 0.25 mm1
b = 18.2824 (5) ÅT = 293 K
c = 12.6656 (4) Å0.28 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII
diffractometer
4758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4335 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.956Rint = 0.020
15501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.16 e Å3
S = 1.04Δρmin = 0.14 e Å3
4758 reflectionsAbsolute structure: Flack (1983), 1936 Friedel pairs
370 parametersAbsolute structure parameter: 0.02 (5)
8 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O4A0.08852 (9)0.14775 (6)0.14251 (11)0.0470 (4)
N1A0.23310 (8)0.22848 (7)0.26652 (10)0.0261 (4)
N4A0.06632 (9)0.20708 (7)0.20969 (11)0.0327 (4)
C2A0.19797 (11)0.17058 (8)0.19004 (13)0.0287 (4)
C3A0.09632 (11)0.14114 (8)0.22857 (15)0.0356 (5)
C4A0.02224 (11)0.20168 (8)0.24970 (13)0.0299 (5)
C5A0.01349 (12)0.32273 (10)0.34549 (15)0.0415 (6)
C6A0.03391 (14)0.38036 (11)0.41681 (17)0.0511 (6)
C7A0.12985 (14)0.41068 (10)0.36777 (17)0.0525 (6)
C8A0.20610 (13)0.35007 (9)0.34488 (15)0.0393 (5)
C9A0.15959 (11)0.29081 (8)0.27758 (13)0.0293 (4)
C10A0.06029 (11)0.26051 (9)0.32326 (13)0.0302 (5)
C21A0.27973 (11)0.11392 (8)0.17575 (13)0.0309 (5)
C22A0.34608 (13)0.12016 (11)0.09173 (15)0.0450 (6)
C23A0.42413 (15)0.07005 (13)0.07871 (17)0.0614 (7)
C24A0.43615 (15)0.01465 (11)0.1498 (2)0.0583 (7)
C25A0.37243 (15)0.00811 (10)0.23380 (18)0.0521 (7)
C26A0.29358 (13)0.05739 (9)0.24692 (15)0.0396 (5)
O4B0.55407 (9)0.14436 (6)0.85979 (11)0.0467 (4)
N1B0.23888 (9)0.22615 (7)0.72882 (11)0.0293 (4)
N4B0.53580 (10)0.20112 (7)0.78713 (12)0.0348 (4)
C2B0.27362 (11)0.16966 (9)0.80739 (13)0.0305 (5)
C3B0.37217 (11)0.13598 (9)0.76778 (15)0.0367 (5)
C4B0.44839 (11)0.19465 (8)0.74485 (13)0.0314 (5)
C5B0.48912 (13)0.31285 (10)0.64300 (16)0.0457 (6)
C6B0.44378 (14)0.36985 (12)0.56901 (18)0.0570 (7)
C7B0.34831 (14)0.40309 (10)0.61570 (18)0.0533 (7)
C8B0.27053 (12)0.34430 (10)0.64105 (16)0.0417 (6)
C9B0.31512 (11)0.28649 (8)0.71339 (13)0.0305 (5)
C10B0.41304 (11)0.25273 (9)0.66891 (13)0.0328 (5)
C21B0.18782 (12)0.11607 (9)0.82825 (14)0.0342 (5)
C22B0.11709 (14)0.13335 (11)0.90508 (15)0.0465 (6)
C23B0.03521 (16)0.08800 (13)0.92400 (18)0.0630 (8)
C24B0.02430 (16)0.02501 (12)0.8665 (2)0.0629 (8)
C25B0.09344 (15)0.00736 (10)0.7902 (2)0.0619 (8)
C26B0.17489 (14)0.05274 (10)0.77065 (18)0.0496 (6)
O10.17392 (18)0.49339 (11)0.0517 (2)0.1090 (9)0.906 (3)
O20.3144 (15)0.4868 (8)0.0019 (18)0.1090 (9)0.095 (3)
Cl10.23093 (3)0.15663 (2)0.49699 (4)0.0410 (1)
Cl20.23808 (3)0.31712 (2)0.99444 (5)0.0463 (1)
H1A10.293280.246160.244600.0314*
H1A20.242600.207830.330250.0314*
H2A0.186670.194200.121590.0344*
H3A10.106710.113220.292800.0427*
H3A20.068340.108460.175720.0427*
H4A0.143100.154900.113140.0705*
H5A10.073960.303280.378980.0498*
H5A20.033590.345220.279350.0498*
H6A10.049720.358810.484830.0613*
H6A20.014170.419760.428150.0613*
H7A10.113040.435740.302560.0631*
H9A0.145760.310900.207300.0352*
H7A20.160120.446020.415420.0631*
H10A0.076430.237200.390880.0362*
H8A10.229390.329100.410920.0472*
H8A20.264450.370530.308700.0472*
H22A0.338360.158190.043630.0540*
H23A0.468170.074190.021630.0737*
H24A0.488440.018960.140810.0699*
H25A0.381790.029440.282370.0625*
H26A0.249650.052440.303950.0475*
H2B0.288470.194990.873810.0366*
H4B0.600210.156300.899680.0700*
H9B0.330050.308780.782020.0366*
H10B0.395480.228290.602510.0393*
H1B10.227270.204190.666390.0351*
H1B20.179930.245640.751140.0351*
H3B10.399060.102920.820750.0440*
H3B20.359080.108020.704130.0440*
H5B10.548570.291320.610190.0548*
H5B20.510570.336480.707850.0548*
H6B10.493240.408150.556280.0684*
H6B20.427720.347160.501830.0684*
H7B10.319400.437610.565920.0640*
H7B20.365410.429540.679660.0640*
H22B0.124750.175950.944400.0558*
H8B10.212070.366500.674820.0500*
H23B0.012220.100150.975480.0756*
H8B20.247840.321500.576050.0500*
H24B0.030420.005860.879380.0755*
H25B0.085530.035420.751340.0743*
H26B0.221400.040560.718280.0595*
H1A0.2045 (6)0.45366 (7)0.0351 (11)0.1635*0.906 (3)
H1B0.2120 (4)0.53110 (13)0.0474 (8)0.1635*0.906 (3)
H2C0.2816 (10)0.4531 (3)0.028 (2)0.1635*0.095 (3)
H2D0.3179 (9)0.52669 (19)0.031 (2)0.1635*0.095 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O4A0.0355 (6)0.0516 (7)0.0538 (8)0.0033 (5)0.0179 (6)0.0147 (6)
N1A0.0186 (6)0.0324 (6)0.0274 (8)0.0001 (5)0.0009 (5)0.0013 (6)
N4A0.0242 (6)0.0399 (7)0.0339 (8)0.0007 (5)0.0042 (5)0.0050 (6)
C2A0.0239 (7)0.0359 (8)0.0262 (8)0.0033 (6)0.0043 (6)0.0004 (7)
C3A0.0255 (7)0.0362 (8)0.0450 (10)0.0008 (6)0.0062 (7)0.0016 (8)
C4A0.0203 (7)0.0363 (8)0.0332 (9)0.0004 (6)0.0005 (6)0.0031 (7)
C5A0.0256 (8)0.0575 (10)0.0415 (11)0.0081 (7)0.0021 (7)0.0120 (9)
C6A0.0384 (9)0.0608 (11)0.0542 (12)0.0112 (9)0.0038 (8)0.0261 (10)
C7A0.0465 (10)0.0474 (9)0.0637 (14)0.0037 (8)0.0067 (9)0.0226 (10)
C8A0.0306 (8)0.0416 (9)0.0457 (11)0.0029 (7)0.0016 (8)0.0074 (8)
C9A0.0256 (7)0.0346 (7)0.0278 (9)0.0032 (6)0.0012 (6)0.0007 (7)
C10A0.0211 (7)0.0417 (8)0.0279 (9)0.0035 (6)0.0025 (6)0.0001 (7)
C21A0.0241 (7)0.0368 (8)0.0318 (9)0.0017 (6)0.0054 (6)0.0069 (7)
C22A0.0390 (9)0.0620 (11)0.0341 (10)0.0121 (8)0.0010 (8)0.0035 (9)
C23A0.0460 (11)0.0932 (15)0.0451 (12)0.0246 (11)0.0080 (9)0.0125 (12)
C24A0.0480 (11)0.0550 (11)0.0718 (16)0.0248 (9)0.0108 (10)0.0183 (11)
C25A0.0503 (10)0.0370 (9)0.0689 (15)0.0079 (8)0.0126 (10)0.0021 (9)
C26A0.0365 (8)0.0344 (8)0.0479 (11)0.0013 (7)0.0017 (8)0.0042 (8)
O4B0.0383 (6)0.0441 (6)0.0576 (9)0.0002 (5)0.0225 (6)0.0093 (6)
N1B0.0232 (6)0.0370 (7)0.0276 (8)0.0031 (5)0.0002 (5)0.0026 (6)
N4B0.0253 (7)0.0411 (7)0.0379 (9)0.0031 (5)0.0056 (6)0.0014 (6)
C2B0.0300 (8)0.0367 (8)0.0247 (9)0.0012 (6)0.0042 (6)0.0005 (7)
C3B0.0273 (8)0.0372 (8)0.0455 (11)0.0020 (7)0.0085 (7)0.0012 (8)
C4B0.0237 (7)0.0404 (8)0.0301 (9)0.0033 (6)0.0016 (6)0.0041 (7)
C5B0.0283 (8)0.0634 (11)0.0454 (12)0.0020 (8)0.0012 (8)0.0157 (10)
C6B0.0388 (10)0.0727 (13)0.0595 (14)0.0056 (9)0.0002 (9)0.0284 (11)
C7B0.0487 (11)0.0512 (10)0.0601 (13)0.0000 (9)0.0026 (10)0.0225 (10)
C8B0.0320 (9)0.0459 (10)0.0471 (12)0.0074 (7)0.0007 (8)0.0107 (9)
C9B0.0274 (7)0.0360 (8)0.0281 (9)0.0001 (6)0.0008 (6)0.0023 (7)
C10B0.0217 (7)0.0485 (9)0.0281 (9)0.0005 (7)0.0017 (6)0.0007 (8)
C21B0.0325 (8)0.0363 (8)0.0338 (10)0.0013 (7)0.0067 (7)0.0014 (7)
C22B0.0465 (10)0.0593 (11)0.0337 (10)0.0138 (9)0.0015 (8)0.0067 (9)
C23B0.0536 (12)0.0916 (15)0.0438 (13)0.0259 (11)0.0113 (9)0.0024 (12)
C24B0.0530 (12)0.0615 (12)0.0743 (17)0.0231 (10)0.0007 (11)0.0099 (12)
C25B0.0480 (11)0.0406 (10)0.0971 (19)0.0071 (9)0.0065 (12)0.0136 (12)
C26B0.0357 (9)0.0444 (10)0.0687 (14)0.0009 (8)0.0009 (9)0.0152 (10)
O10.1029 (16)0.0790 (12)0.145 (2)0.0179 (12)0.0326 (15)0.0115 (13)
O20.1029 (16)0.0790 (12)0.145 (2)0.0179 (12)0.0326 (15)0.0115 (13)
Cl10.0443 (2)0.0488 (2)0.0298 (2)0.0058 (2)0.0018 (2)0.0005 (2)
Cl20.0433 (2)0.0545 (2)0.0410 (2)0.0002 (2)0.0150 (2)0.0034 (3)
Geometric parameters (Å, º) top
O4A—N4A1.4093 (18)C8A—H8A10.9700
O4A—H4A0.8200C8A—H8A20.9700
O4B—N4B1.4077 (19)C9A—H9A0.9800
O4B—H4B0.8200C10A—H10A0.9800
O1—H1A0.857 (6)C22A—H22A0.9300
O1—H1B0.854 (4)C23A—H23A0.9300
O2—H2C0.84 (2)C24A—H24A0.9300
O2—H2D0.84 (2)C25A—H25A0.9300
N1A—C9A1.5020 (19)C26A—H26A0.9300
N1A—C2A1.508 (2)C2B—C3B1.522 (2)
N4A—C4A1.2758 (19)C2B—C21B1.519 (2)
N1A—H1A10.9000C3B—C4B1.498 (2)
N1A—H1A20.9000C4B—C10B1.507 (2)
N1B—C2B1.505 (2)C5B—C10B1.523 (2)
N1B—C9B1.5046 (19)C5B—C6B1.524 (3)
N4B—C4B1.275 (2)C6B—C7B1.517 (3)
N1B—H1B20.9000C7B—C8B1.519 (3)
N1B—H1B10.9000C8B—C9B1.517 (2)
C2A—C21A1.505 (2)C9B—C10B1.537 (2)
C2A—C3A1.524 (2)C21B—C22B1.384 (3)
C3A—C4A1.500 (2)C21B—C26B1.379 (3)
C4A—C10A1.509 (2)C22B—C23B1.381 (3)
C5A—C6A1.522 (3)C23B—C24B1.370 (3)
C5A—C10A1.523 (2)C24B—C25B1.367 (3)
C6A—C7A1.513 (3)C25B—C26B1.379 (3)
C7A—C8A1.523 (3)C2B—H2B0.9800
C8A—C9A1.509 (2)C3B—H3B10.9700
C9A—C10A1.534 (2)C3B—H3B20.9700
C21A—C26A1.384 (2)C5B—H5B10.9700
C21A—C22A1.382 (2)C5B—H5B20.9700
C22A—C23A1.387 (3)C6B—H6B20.9700
C23A—C24A1.364 (3)C6B—H6B10.9700
C24A—C25A1.360 (3)C7B—H7B20.9700
C25A—C26A1.385 (3)C7B—H7B10.9700
C2A—H2A0.9800C8B—H8B10.9700
C3A—H3A20.9700C8B—H8B20.9700
C3A—H3A10.9700C9B—H9B0.9800
C5A—H5A10.9700C10B—H10B0.9800
C5A—H5A20.9700C22B—H22B0.9300
C6A—H6A10.9700C23B—H23B0.9300
C6A—H6A20.9700C24B—H24B0.9300
C7A—H7A20.9700C25B—H25B0.9300
C7A—H7A10.9700C26B—H26B0.9300
Cl1···N1A3.2011 (14)H1A2···Cl12.3200
Cl1···N1B3.2013 (15)H2A···H22A2.3200
Cl1···O2i3.162 (15)H2A···H22Bv2.4100
Cl1···O1i3.310 (2)H2A···Cl2v2.8500
Cl2···O1ii3.410 (2)H2A···H9A2.4500
Cl2···O2ii3.261 (15)H2A···C22Bv3.1000
Cl2···O4Biii3.0464 (13)H2B···H22Aii2.3500
Cl2···C2B3.6194 (17)H2B···H9B2.4500
Cl1···H10A2.8500H2B···Cl22.7900
Cl1···H10B2.8600H2B···H22B2.3600
Cl1···H1A22.3200H2C···O4Aiv2.904 (15)
Cl1···H2Di2.499 (6)H2C···H4Aiv2.4600
Cl1···H5B1iii2.9600H2C···Cl2v2.587 (7)
Cl1···H26A3.1100H2D···H26Bvi2.4400
Cl1···H5A1iv3.0600H2D···Cl1vi2.499 (6)
Cl1···H1Bi2.498 (4)H2D···C26Bvi3.07 (3)
Cl1···H1B12.3200H3A1···H1A22.5300
Cl2···H2B2.7900H3A1···C26A2.7300
Cl2···H9B2.9500H3A1···H26A2.1900
Cl2···H22B3.0500H3A1···H24Bviii2.4600
Cl2···H9Aii2.9600H3A2···O4A2.2300
Cl2···H2Cii2.587 (7)H4A···H2Ciii2.4600
Cl2···H2Aii2.8500H4A···Cl2ix2.2300
Cl2···H4Biii2.2300H4A···H1A1iii2.6000
Cl2···H1Aii2.587 (3)H4B···Cl2iv2.2300
O1···Cl2v3.410 (2)H5A1···Cl1iii3.0600
O1···C24Aiii3.373 (3)H5A1···N4A2.7800
O1···Cl1vi3.310 (2)H5A1···H1A2iii2.5000
O2···Cl1vi3.162 (15)H5A2···H7A12.5600
O2···C24Bvii3.24 (2)H5A2···C21Aiii2.8900
O2···C23Bvii3.348 (19)H5A2···C22Aiii2.9300
O2···Cl2v3.261 (15)H5A2···C23Aiii3.0300
O4A···C25Bviii3.398 (2)H5A2···C24Aiii3.0700
O4A···Cl2ix3.0245 (14)H5A2···C25Aiii3.0100
O4A···C23Bv3.393 (3)H5A2···C26Aiii2.9200
O4B···C25Ax3.355 (2)H5A2···N4A2.7100
O4B···Cl2iv3.0464 (13)H6A1···H10A2.5500
O1···H26Bvi2.6600H7A1···H5A22.5600
O1···H24Aiii2.7300H9A···H2A2.4500
O1···H3B2vi2.8800H9A···Cl2v2.9600
O2···H26Avi2.8600H9B···H2B2.4500
O2···H23Bvii2.8000H9B···Cl22.9500
O2···H24Bvii2.5600H10A···H1A22.3800
O4A···H1A1iii2.8000H10A···H6A12.5500
O4A···H2Ciii2.904 (15)H10A···Cl12.8500
O4A···H8A2iii2.8800H10B···H3B22.5900
O4A···H23Bv2.5000H10B···Cl12.8600
O4A···H25Bviii2.4700H10B···H1B12.4000
O4A···H3A22.2300H10B···H6B22.5600
O4B···H23Aii2.6700H8A1···C8B2.9800
O4B···H3B12.2300H8A1···H1A22.4500
O4B···H25Ax2.4700H8A1···H8B22.1100
N1A···Cl13.2011 (14)H8A2···H1A12.4400
N1A···N4Aiv2.9812 (16)H8A2···O4Aiv2.8800
N1B···N4Biii3.0774 (18)H8A2···N4Aiv2.9300
N1B···Cl13.2013 (15)H1B1···C4B3.0800
N4A···N1Aiii2.9812 (16)H1B1···H3B22.5200
N4B···N1Biv3.0774 (18)H1B1···Cl12.3200
N1B···H5B1iii2.9400H1B1···H5B1iii2.4600
N4A···H1A1iii2.0800H1B1···H8B22.4500
N4A···H5A12.7800H1B1···H10B2.4000
N4A···H5A22.7100H1B2···H8B12.4500
N4A···H8A2iii2.9300H1B2···N4Biii2.1800
N4B···H5B12.7900H1B2···C5Biii3.0600
N4B···H1B2iv2.1800H1B2···C22B2.9500
N4B···H5B22.6900H1B2···H5B1iii2.5800
C2B···Cl23.6194 (17)H3B1···O4B2.2300
C5A···C26Aiii3.581 (2)H3B2···O1i2.8800
C23B···O2xi3.348 (19)H3B2···H1B12.5200
C23B···O4Aii3.393 (3)H3B2···C26B2.7600
C24A···O1iv3.373 (3)H3B2···H10B2.5900
C24B···O2xi3.24 (2)H3B2···H26B2.2000
C25A···O4Bxii3.355 (2)H5B1···Cl1iv2.9600
C25B···O4Axiii3.398 (2)H5B1···N1Biv2.9400
C26A···C5Aiv3.581 (2)H5B1···N4B2.7900
C3A···H25Bviii3.0900H5B1···H1B1iv2.4600
C3A···H26A2.7600H5B1···H1B2iv2.5800
C3B···H26B2.7200H5B2···N4B2.6900
C4A···H1A23.0800H5B2···H7B22.5800
C4B···H1B13.0800H5B2···C21Biv2.9200
C5B···H1B2iv3.0600H5B2···C22Biv2.9200
C8A···H8B23.0200H5B2···C23Biv3.0800
C8B···H8A12.9800H5B2···C26Biv3.0700
C21A···H5A2iv2.8900H6B2···H10B2.5600
C21B···H5B2iii2.9200H6B2···H8B22.5900
C22A···H5A2iv2.9300H7B2···H5B22.5800
C22A···H1A13.0900H22A···H2Bv2.3500
C22B···H5B2iii2.9200H22A···H2A2.3200
C22B···H1B22.9500H22B···Cl23.0500
C22B···H2Aii3.1000H22B···H2Aii2.4100
C23A···H5A2iv3.0300H22B···H2B2.3600
C23B···H5B2iii3.0800H8B1···H1B22.4500
C24A···H5A2iv3.0700H8B1···C25Axv2.9200
C25A···H8B1xiv2.9200H23A···O4Bv2.6700
C25A···H5A2iv3.0100H23B···O2xi2.8000
C26A···H1A23.0200H23B···O4Aii2.5000
C26A···H5A2iv2.9200H8B2···H8A12.1100
C26A···H3A12.7300H8B2···H6B22.5900
C26B···H5B2iii3.0700H8B2···H1B12.4500
C26B···H2Di3.07 (3)H8B2···C8A3.0200
C26B···H3B22.7600H24A···O1iv2.7300
H1A1···C22A3.0900H24B···O2xi2.5600
H1A1···H4Aiv2.6000H24B···H3A1xiii2.4600
H1A1···N4Aiv2.0800H25A···O4Bxii2.4700
H1A1···H8A22.4400H25B···C3Axiii3.0900
H1A1···O4Aiv2.8000H25B···O4Axiii2.4700
H1A···Cl2v2.587 (3)H26A···H3A12.1900
H1B···H26Bvi2.3400H26A···O2i2.8600
H1B···Cl1vi2.498 (4)H26A···C3A2.7600
H1A2···H8A12.4500H26A···Cl13.1100
H1A2···H5A1iv2.5000H26B···C3B2.7200
H1A2···H3A12.5300H26B···H3B22.2000
H1A2···H10A2.3800H26B···H1Bi2.3400
H1A2···C4A3.0800H26B···H2Di2.4400
H1A2···C26A3.0200H26B···O1i2.6600
N4A—O4A—H4A109.00C23A—C22A—H22A120.00
N4B—O4B—H4B109.00C22A—C23A—H23A120.00
H1A—O1—H1B113.1 (6)C24A—C23A—H23A120.00
H2C—O2—H2D116 (3)C25A—C24A—H24A120.00
C2A—N1A—C9A113.25 (11)C23A—C24A—H24A120.00
O4A—N4A—C4A111.72 (12)C26A—C25A—H25A120.00
H1A1—N1A—H1A2108.00C24A—C25A—H25A120.00
C2A—N1A—H1A1109.00C25A—C26A—H26A120.00
C9A—N1A—H1A1109.00C21A—C26A—H26A120.00
C9A—N1A—H1A2109.00C3B—C2B—C21B115.54 (14)
C2A—N1A—H1A2109.00N1B—C2B—C21B109.35 (12)
C2B—N1B—C9B112.70 (11)N1B—C2B—C3B108.60 (13)
O4B—N4B—C4B111.13 (12)C2B—C3B—C4B110.25 (13)
C2B—N1B—H1B1109.00N4B—C4B—C10B118.80 (13)
H1B1—N1B—H1B2108.00N4B—C4B—C3B126.18 (15)
C9B—N1B—H1B2109.00C3B—C4B—C10B114.92 (13)
C2B—N1B—H1B2109.00C6B—C5B—C10B111.60 (14)
C9B—N1B—H1B1109.00C5B—C6B—C7B111.06 (17)
N1A—C2A—C21A109.93 (12)C6B—C7B—C8B110.99 (16)
C3A—C2A—C21A115.11 (12)C7B—C8B—C9B111.06 (14)
N1A—C2A—C3A108.18 (12)N1B—C9B—C10B108.26 (12)
C2A—C3A—C4A111.62 (12)N1B—C9B—C8B109.32 (12)
N4A—C4A—C3A125.54 (14)C8B—C9B—C10B112.54 (14)
N4A—C4A—C10A119.60 (13)C4B—C10B—C5B116.28 (13)
C3A—C4A—C10A114.85 (13)C5B—C10B—C9B109.96 (13)
C6A—C5A—C10A111.42 (14)C4B—C10B—C9B107.97 (13)
C5A—C6A—C7A110.65 (16)C2B—C21B—C26B122.78 (16)
C6A—C7A—C8A111.24 (15)C22B—C21B—C26B118.72 (16)
C7A—C8A—C9A111.23 (14)C2B—C21B—C22B118.43 (15)
N1A—C9A—C8A109.62 (12)C21B—C22B—C23B120.71 (18)
C8A—C9A—C10A113.12 (14)C22B—C23B—C24B119.6 (2)
N1A—C9A—C10A108.12 (12)C23B—C24B—C25B120.3 (2)
C4A—C10A—C5A115.77 (13)C24B—C25B—C26B120.24 (19)
C4A—C10A—C9A107.93 (13)C21B—C26B—C25B120.42 (19)
C5A—C10A—C9A110.14 (13)C3B—C2B—H2B108.00
C2A—C21A—C26A122.01 (14)C21B—C2B—H2B108.00
C22A—C21A—C26A118.69 (15)N1B—C2B—H2B108.00
C2A—C21A—C22A119.23 (15)C4B—C3B—H3B1110.00
C21A—C22A—C23A120.39 (18)C2B—C3B—H3B1110.00
C22A—C23A—C24A119.86 (19)C2B—C3B—H3B2110.00
C23A—C24A—C25A120.65 (19)H3B1—C3B—H3B2108.00
C24A—C25A—C26A119.96 (19)C4B—C3B—H3B2110.00
C21A—C26A—C25A120.44 (17)C6B—C5B—H5B2109.00
C21A—C2A—H2A108.00C6B—C5B—H5B1109.00
N1A—C2A—H2A108.00H5B1—C5B—H5B2108.00
C3A—C2A—H2A108.00C10B—C5B—H5B1109.00
C2A—C3A—H3A1109.00C10B—C5B—H5B2109.00
C2A—C3A—H3A2109.00C7B—C6B—H6B1109.00
C4A—C3A—H3A1109.00C7B—C6B—H6B2109.00
C4A—C3A—H3A2109.00H6B1—C6B—H6B2108.00
H3A1—C3A—H3A2108.00C5B—C6B—H6B1109.00
C6A—C5A—H5A2109.00C5B—C6B—H6B2109.00
H5A1—C5A—H5A2108.00C6B—C7B—H7B1109.00
C10A—C5A—H5A2109.00C8B—C7B—H7B2109.00
C6A—C5A—H5A1109.00C6B—C7B—H7B2109.00
C10A—C5A—H5A1109.00C8B—C7B—H7B1109.00
H6A1—C6A—H6A2108.00H7B1—C7B—H7B2108.00
C5A—C6A—H6A1110.00C7B—C8B—H8B2109.00
C7A—C6A—H6A2110.00C9B—C8B—H8B1109.00
C7A—C6A—H6A1110.00H8B1—C8B—H8B2108.00
C5A—C6A—H6A2110.00C9B—C8B—H8B2109.00
C8A—C7A—H7A1109.00C7B—C8B—H8B1109.00
C6A—C7A—H7A2109.00N1B—C9B—H9B109.00
H7A1—C7A—H7A2108.00C10B—C9B—H9B109.00
C6A—C7A—H7A1109.00C8B—C9B—H9B109.00
C8A—C7A—H7A2109.00C5B—C10B—H10B107.00
C7A—C8A—H8A1109.00C9B—C10B—H10B107.00
C9A—C8A—H8A2109.00C4B—C10B—H10B107.00
C7A—C8A—H8A2109.00C21B—C22B—H22B120.00
C9A—C8A—H8A1109.00C23B—C22B—H22B120.00
H8A1—C8A—H8A2108.00C22B—C23B—H23B120.00
C10A—C9A—H9A109.00C24B—C23B—H23B120.00
N1A—C9A—H9A109.00C25B—C24B—H24B120.00
C8A—C9A—H9A109.00C23B—C24B—H24B120.00
C9A—C10A—H10A108.00C24B—C25B—H25B120.00
C5A—C10A—H10A108.00C26B—C25B—H25B120.00
C4A—C10A—H10A108.00C25B—C26B—H26B120.00
C21A—C22A—H22A120.00C21B—C26B—H26B120.00
C9A—N1A—C2A—C3A58.84 (16)C26A—C21A—C22A—C23A0.8 (3)
C9A—N1A—C2A—C21A174.71 (12)C2A—C21A—C26A—C25A177.11 (16)
C2A—N1A—C9A—C8A173.23 (13)C21A—C22A—C23A—C24A0.6 (3)
C2A—N1A—C9A—C10A63.05 (16)C22A—C23A—C24A—C25A0.2 (3)
O4A—N4A—C4A—C3A0.9 (2)C23A—C24A—C25A—C26A0.9 (3)
O4A—N4A—C4A—C10A179.48 (13)C24A—C25A—C26A—C21A0.8 (3)
C9B—N1B—C2B—C3B59.89 (16)N1B—C2B—C3B—C4B53.73 (17)
C9B—N1B—C2B—C21B173.23 (13)C21B—C2B—C3B—C4B176.97 (14)
C2B—N1B—C9B—C8B174.93 (13)N1B—C2B—C21B—C22B86.26 (19)
C2B—N1B—C9B—C10B62.15 (16)N1B—C2B—C21B—C26B90.68 (19)
O4B—N4B—C4B—C3B0.7 (2)C3B—C2B—C21B—C22B150.90 (16)
O4B—N4B—C4B—C10B176.86 (13)C3B—C2B—C21B—C26B32.2 (2)
C3A—C2A—C21A—C26A40.8 (2)C2B—C3B—C4B—N4B120.99 (18)
C21A—C2A—C3A—C4A175.02 (14)C2B—C3B—C4B—C10B55.31 (19)
N1A—C2A—C21A—C22A95.33 (17)N4B—C4B—C10B—C5B4.0 (2)
N1A—C2A—C3A—C4A51.65 (17)N4B—C4B—C10B—C9B120.09 (16)
C3A—C2A—C21A—C22A142.23 (16)C3B—C4B—C10B—C5B179.41 (15)
N1A—C2A—C21A—C26A81.69 (18)C3B—C4B—C10B—C9B56.50 (18)
C2A—C3A—C4A—N4A125.11 (17)C10B—C5B—C6B—C7B57.0 (2)
C2A—C3A—C4A—C10A53.58 (19)C6B—C5B—C10B—C4B177.83 (15)
N4A—C4A—C10A—C5A1.0 (2)C6B—C5B—C10B—C9B54.8 (2)
C3A—C4A—C10A—C9A55.82 (18)C5B—C6B—C7B—C8B56.7 (2)
N4A—C4A—C10A—C9A122.96 (15)C6B—C7B—C8B—C9B55.5 (2)
C3A—C4A—C10A—C5A179.74 (14)C7B—C8B—C9B—N1B175.11 (14)
C6A—C5A—C10A—C9A54.96 (19)C7B—C8B—C9B—C10B54.77 (19)
C10A—C5A—C6A—C7A57.8 (2)N1B—C9B—C10B—C4B57.15 (16)
C6A—C5A—C10A—C4A177.73 (15)N1B—C9B—C10B—C5B175.05 (13)
C5A—C6A—C7A—C8A57.1 (2)C8B—C9B—C10B—C4B178.09 (13)
C6A—C7A—C8A—C9A54.7 (2)C8B—C9B—C10B—C5B54.11 (18)
C7A—C8A—C9A—N1A173.94 (14)C2B—C21B—C22B—C23B177.23 (17)
C7A—C8A—C9A—C10A53.20 (19)C26B—C21B—C22B—C23B0.2 (3)
C8A—C9A—C10A—C5A53.22 (18)C2B—C21B—C26B—C25B177.51 (18)
C8A—C9A—C10A—C4A179.52 (13)C22B—C21B—C26B—C25B0.6 (3)
N1A—C9A—C10A—C4A57.94 (16)C21B—C22B—C23B—C24B0.4 (3)
N1A—C9A—C10A—C5A174.81 (13)C22B—C23B—C24B—C25B0.6 (3)
C2A—C21A—C22A—C23A177.89 (17)C23B—C24B—C25B—C26B0.2 (3)
C22A—C21A—C26A—C25A0.1 (3)C24B—C25B—C26B—C21B0.4 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y, z1; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z1; (viii) x, y, z1/2; (ix) x1/2, y+1/2, z1; (x) x+1, y, z+1/2; (xi) x1/2, y+1/2, z+1; (xii) x+1, y, z1/2; (xiii) x, y, z+1/2; (xiv) x+1/2, y1/2, z1/2; (xv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···N4Aiv0.902.082.9812 (16)174
O1—H1A···Cl2v0.857 (6)2.587 (3)3.410 (2)161.3 (7)
O1—H1B···Cl1vi0.854 (4)2.498 (4)3.310 (2)159.1 (6)
N1A—H1A2···Cl10.902.323.2011 (14)168
O4A—H4A···Cl2ix0.822.233.0245 (14)163
O4B—H4B···Cl2iv0.822.233.0464 (13)173
N1B—H1B1···Cl10.902.323.2013 (15)168
N1B—H1B2···N4Biii0.902.183.0774 (18)173
C2B—H2B···Cl20.982.793.6194 (17)143
C3A—H3A2···O4A0.972.232.671 (2)107
C3B—H3B1···O4B0.972.232.669 (2)106
C23B—H23B···O4Aii0.932.503.393 (3)161
C25A—H25A···O4Bxii0.932.473.355 (2)160
C25B—H25B···O4Axiii0.932.473.398 (2)172
O2—H2C···Cl2v0.842 (6)2.587 (3)3.261 (2)137.9 (7)
O2—H2D···Cl1vi0.840 (4)2.498 (4)3.162 (2)136.6 (6)
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y, z1; (vi) x+1/2, y+1/2, z1/2; (ix) x1/2, y+1/2, z1; (xii) x+1, y, z1/2; (xiii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H21N2O+·Cl·0.5H2O
Mr289.81
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)13.1733 (4), 18.2824 (5), 12.6656 (4)
V3)3050.38 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.28 × 0.18 × 0.18
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.743, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
15501, 4758, 4335
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.04
No. of reflections4758
No. of parameters370
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14
Absolute structureFlack (1983), 1936 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2004), APEX2 (Bruker, 2004, SAINT-NT (Bruker, 2004), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···N4Ai0.902.082.9812 (16)174
O1—H1A···Cl2ii0.857 (6)2.587 (3)3.410 (2)161.3 (7)
O1—H1B···Cl1iii0.854 (4)2.498 (4)3.310 (2)159.1 (6)
N1A—H1A2···Cl10.902.323.2011 (14)168
O4A—H4A···Cl2iv0.822.233.0245 (14)163
O4B—H4B···Cl2i0.822.233.0464 (13)173
N1B—H1B1···Cl10.902.323.2013 (15)168
N1B—H1B2···N4Bv0.902.183.0774 (18)173
C2B—H2B···Cl20.982.793.6194 (17)143
C3A—H3A2···O4A0.972.232.671 (2)107
C3B—H3B1···O4B0.972.232.669 (2)106
C23B—H23B···O4Avi0.932.503.393 (3)161
C25A—H25A···O4Bvii0.932.473.355 (2)160
C25B—H25B···O4Aviii0.932.473.398 (2)172
O2—H2C···Cl2ii0.842 (6)2.587 (3)3.261 (2)137.9 (7)
O2—H2D···Cl1iii0.840 (4)2.498 (4)3.162 (2)136.6 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z1; (v) x1/2, y+1/2, z; (vi) x, y, z+1; (vii) x+1, y, z1/2; (viii) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds