Download citation
Download citation
link to html
The title compound, [Cu(C12H16N3O3)(CH3COO)]n or [Cu(CMP)(CH3COO)]n {CMP is 2-[3-(dimethyl­amino)propyl­imino­meth­yl]-4-nitro­phenol}, was synthesized by the reaction of 2-hydr­oxy-5-nitro­benzaldehyde, N,N-dimethyl­propane-1,3-diamine and copper(II) acetate monohydrate in a methanol solution. The compound is an acetate-bridged polymeric copper(II) complex. The CuII atom is coordinated in a square-pyramidal manner by one Schiff base CMP ligand and two acetate anions. The Schiff base mol­ecule acts as a tridentate ligand, coordinating the CuII ion through its phenolate O atom, imine N atom and amine N atom. The acetate anion acts as a bridging group, coordinating two adjacent CuII ions through its two O atoms, one in the basal plane and the other in the apical position. The [Cu(CMP)] units are linked through the bridging acetate groups, forming chains running along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057376/at2461sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057376/at2461Isup2.hkl
Contains datablock I

CCDC reference: 672637

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.079
  • wR factor = 0.184
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.86 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.07
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Polynuclear complexes are very interesting in both structures and properties in coordination chemistry. The azide, thiocyanate, and cyanide anions are often used to construct versatile polynuclear complexes (Escuer & Aromí, 2006; Massoud et al., 2007; Zhang et al., 2001; Dey et al., 2004; Liu et al., 2006; Mondal et al., 2001). In comparison, the acetato-bridged polynuclear complexes are rarely seen. Recently, we have reported the crystal structures of some Schiff base complexes (Li, 2007a,b). In order to investigate the coordination modes of the acetate anions, the author reports herein the crystal structure of an acetato-bridged polynuclear copper(II) complex with Schiff base ligand 4-chloro-2-[(3-dimethylaminopropylimino)methyl]phenol (CMP).

The Cu atom in the acetato-bridged polynuclear complex is square-pyramidal coordinated by one Schiff base ligand CMP and two acetate anions (Fig. 1). The Schiff base molecule acts as a tridentate ligand coordinating the copper ion through the phenolic O atom, imine N atom and amine N atom. The acetate anion acts as a bridging group coordinating adjacent two copper ions through the two O atoms, one at the basal plane and the other one at the apical position. All the coordinated bond lengths and angles (Table 1) are comparable to the values in other similar Schiff base copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Wang & You, 2007; Diao et al., 2007; Usman et al., 2003).

In the crystal structure, the [Cu(CMP)] units are linked through the bridging acetate groups, forming chains running along the c axis (Fig. 2).

Related literature top

For azido-bridged polynuclear complexes, see: Escuer & Aromí (2006); Massoud et al. (2007). For thiocyanato-bridged polynuclear complexes, see: Zhang et al. (2001); Dey et al. (2004). For cyano-bridged polynuclear complexes, see: Liu et al. (2006); Mondal et al. (2001). For our previously reported Schiff base complexes, see: Li (2007a,b). For related structures, see: Hebbachi & Benali-Cherif (2005); Wang & You (2007); Diao et al. (2007); Usman et al. (2003).

Experimental top

5-Nitro-2-hydroxybenzaldehyde (0.1 mmol, 16.7 mg), N,N-dimethylpropane-1,3-diamine (0.1 mmol, 10.2 mg), and copper(II) acetate monohydrate (0.1 mmol, 19.9 mg) were mixed in methanol (20 ml) and the mixture was stirred for 30 min at room temperature. The reaction mixture was fitered. Blue block-shaped single crystals suitable for X-ray diffraction were formed from the filtrate after a week.

Refinement top

All H atom positions were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of (I).
catena-Poly[[{2-[3-(dimethylamino)propyliminomethyl]-4- nitrophenolato}copper(II)]-µ-acetato] top
Crystal data top
[Cu(C12H16N3O3)(C2H3O2)]F(000) = 772
Mr = 372.86Dx = 1.560 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1027 reflections
a = 13.834 (3) Åθ = 2.3–24.5°
b = 11.661 (2) ŵ = 1.41 mm1
c = 9.988 (2) ÅT = 298 K
β = 99.86 (3)°Block, blue
V = 1587.5 (6) Å30.27 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3522 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.703, Tmax = 0.767k = 1512
9081 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0706P)2]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C12H16N3O3)(C2H3O2)]V = 1587.5 (6) Å3
Mr = 372.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.834 (3) ŵ = 1.41 mm1
b = 11.661 (2) ÅT = 298 K
c = 9.988 (2) Å0.27 × 0.23 × 0.20 mm
β = 99.86 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3522 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2037 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.767Rint = 0.087
9081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.00Δρmax = 0.85 e Å3
3522 reflectionsΔρmin = 0.61 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.82621 (5)0.77042 (6)0.15549 (7)0.0297 (3)
O10.4913 (4)0.3131 (5)0.2555 (6)0.0722 (16)
O20.6056 (5)0.1905 (6)0.3039 (8)0.105 (3)
O30.8450 (3)0.6052 (4)0.1489 (4)0.0371 (11)
O40.9473 (3)0.7753 (4)0.2908 (4)0.0368 (10)
O50.8694 (3)0.7033 (4)0.4489 (4)0.0398 (11)
N10.6858 (4)0.7516 (4)0.0710 (5)0.0359 (13)
N20.8117 (4)0.9467 (4)0.1846 (5)0.0375 (13)
N30.5767 (5)0.2850 (6)0.2657 (7)0.0584 (17)
C10.6773 (4)0.5540 (5)0.1479 (6)0.0331 (14)
C20.7805 (4)0.5326 (5)0.1707 (5)0.0301 (14)
C30.8105 (5)0.4200 (6)0.2173 (6)0.0438 (17)
H30.87660.40060.22820.053*
C40.7456 (5)0.3407 (6)0.2461 (7)0.0453 (17)
H40.76770.26880.27810.054*
C50.6451 (5)0.3667 (6)0.2278 (6)0.0401 (16)
C60.6122 (5)0.4719 (5)0.1788 (6)0.0384 (15)
H60.54550.48840.16610.046*
C70.6381 (4)0.6600 (6)0.0865 (6)0.0363 (15)
H70.57080.66190.05470.044*
C80.6331 (5)0.8417 (6)0.0144 (7)0.0504 (19)
H8A0.56440.82070.03620.061*
H8B0.65850.84530.09910.061*
C90.6408 (5)0.9577 (6)0.0489 (7)0.055 (2)
H9A0.61700.95390.13470.065*
H9B0.59861.01020.00990.065*
C100.7438 (5)1.0050 (6)0.0742 (7)0.0496 (18)
H10A0.77060.99910.00920.060*
H10B0.74101.08580.09640.060*
C110.7785 (6)0.9636 (6)0.3160 (6)0.057 (2)
H11A0.77021.04400.33110.085*
H11B0.82660.93290.38780.085*
H11C0.71720.92480.31470.085*
C120.9085 (5)1.0048 (6)0.1915 (8)0.056 (2)
H12A0.90201.08460.21190.084*
H12B0.93030.99720.10570.084*
H12C0.95560.97000.26150.084*
C131.0367 (5)0.7595 (6)0.5095 (7)0.054 (2)
H13A1.03490.83210.55450.081*
H13B1.09140.75810.46190.081*
H13C1.04370.69900.57570.081*
C140.9432 (5)0.7429 (5)0.4103 (6)0.0332 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0299 (4)0.0322 (5)0.0270 (4)0.0009 (3)0.0052 (3)0.0021 (3)
O10.057 (4)0.059 (4)0.109 (5)0.012 (3)0.038 (3)0.006 (3)
O20.086 (5)0.052 (4)0.183 (7)0.002 (4)0.043 (5)0.040 (5)
O30.032 (2)0.032 (3)0.048 (3)0.0026 (19)0.0119 (19)0.008 (2)
O40.044 (2)0.041 (3)0.025 (2)0.003 (2)0.0045 (17)0.004 (2)
O50.038 (2)0.054 (3)0.029 (2)0.006 (2)0.0133 (18)0.001 (2)
N10.034 (3)0.040 (4)0.033 (3)0.001 (2)0.006 (2)0.006 (2)
N20.050 (3)0.032 (3)0.033 (3)0.002 (2)0.013 (2)0.002 (2)
N30.059 (4)0.040 (4)0.081 (5)0.002 (3)0.024 (4)0.000 (4)
C10.047 (4)0.028 (4)0.026 (3)0.005 (3)0.009 (3)0.007 (3)
C20.033 (3)0.030 (4)0.028 (3)0.001 (3)0.006 (2)0.010 (3)
C30.049 (4)0.036 (4)0.046 (4)0.005 (3)0.004 (3)0.001 (3)
C40.054 (4)0.029 (4)0.052 (4)0.000 (3)0.007 (3)0.001 (3)
C50.049 (4)0.031 (4)0.043 (4)0.006 (3)0.015 (3)0.005 (3)
C60.038 (3)0.036 (4)0.043 (4)0.007 (3)0.012 (3)0.010 (3)
C70.030 (3)0.046 (4)0.032 (3)0.007 (3)0.001 (3)0.003 (3)
C80.052 (4)0.051 (5)0.044 (4)0.003 (3)0.004 (3)0.008 (4)
C90.052 (4)0.044 (5)0.061 (5)0.003 (4)0.009 (4)0.022 (4)
C100.063 (5)0.035 (4)0.052 (4)0.007 (3)0.012 (4)0.011 (3)
C110.082 (6)0.055 (5)0.033 (4)0.021 (4)0.009 (4)0.006 (4)
C120.054 (4)0.035 (4)0.074 (5)0.007 (3)0.000 (4)0.003 (4)
C130.051 (4)0.081 (6)0.031 (3)0.003 (4)0.007 (3)0.001 (4)
C140.036 (3)0.032 (4)0.031 (3)0.008 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O31.946 (4)C4—C51.404 (9)
Cu1—O41.965 (4)C4—H40.9300
Cu1—N11.992 (5)C5—C61.370 (9)
Cu1—N22.091 (5)C6—H60.9300
Cu1—O5i2.265 (4)C7—H70.9300
O1—N31.215 (8)C8—C91.490 (10)
O2—N31.211 (8)C8—H8A0.9700
O3—C21.276 (7)C8—H8B0.9700
O4—C141.262 (7)C9—C101.509 (9)
O5—C141.241 (7)C9—H9A0.9700
O5—Cu1ii2.265 (4)C9—H9B0.9700
N1—C71.280 (7)C10—H10A0.9700
N1—C81.467 (8)C10—H10B0.9700
N2—C111.476 (8)C11—H11A0.9600
N2—C101.485 (8)C11—H11B0.9600
N2—C121.492 (8)C11—H11C0.9600
N3—C51.438 (9)C12—H12A0.9600
C1—C61.385 (8)C12—H12B0.9600
C1—C21.429 (8)C12—H12C0.9600
C1—C71.444 (9)C13—C141.502 (9)
C2—C31.431 (9)C13—H13A0.9600
C3—C41.353 (9)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
O3—Cu1—O487.07 (17)N1—C7—C1127.0 (6)
O3—Cu1—N190.17 (18)N1—C7—H7116.5
O4—Cu1—N1161.58 (19)C1—C7—H7116.5
O3—Cu1—N2173.93 (19)N1—C8—C9114.3 (5)
O4—Cu1—N288.09 (19)N1—C8—H8A108.7
N1—Cu1—N293.3 (2)C9—C8—H8A108.7
O3—Cu1—O5i92.62 (16)N1—C8—H8B108.7
O4—Cu1—O5i107.21 (17)C9—C8—H8B108.7
N1—Cu1—O5i91.10 (18)H8A—C8—H8B107.6
N2—Cu1—O5i92.32 (18)C8—C9—C10113.5 (6)
C2—O3—Cu1123.4 (4)C8—C9—H9A108.9
C14—O4—Cu1118.0 (4)C10—C9—H9A108.9
C14—O5—Cu1ii126.3 (4)C8—C9—H9B108.9
C7—N1—C8116.9 (5)C10—C9—H9B108.9
C7—N1—Cu1121.8 (4)H9A—C9—H9B107.7
C8—N1—Cu1121.3 (4)N2—C10—C9114.6 (5)
C11—N2—C10110.3 (5)N2—C10—H10A108.6
C11—N2—C12108.2 (5)C9—C10—H10A108.6
C10—N2—C12105.9 (5)N2—C10—H10B108.6
C11—N2—Cu1107.9 (4)C9—C10—H10B108.6
C10—N2—Cu1114.2 (4)H10A—C10—H10B107.6
C12—N2—Cu1110.2 (4)N2—C11—H11A109.5
O2—N3—O1122.4 (7)N2—C11—H11B109.5
O2—N3—C5119.3 (7)H11A—C11—H11B109.5
O1—N3—C5118.3 (6)N2—C11—H11C109.5
C6—C1—C2120.9 (6)H11A—C11—H11C109.5
C6—C1—C7118.3 (6)H11B—C11—H11C109.5
C2—C1—C7120.7 (6)N2—C12—H12A109.5
O3—C2—C1124.4 (6)N2—C12—H12B109.5
O3—C2—C3119.5 (6)H12A—C12—H12B109.5
C1—C2—C3116.0 (6)N2—C12—H12C109.5
C4—C3—C2122.0 (6)H12A—C12—H12C109.5
C4—C3—H3119.0H12B—C12—H12C109.5
C2—C3—H3119.0C14—C13—H13A109.5
C3—C4—C5120.2 (6)C14—C13—H13B109.5
C3—C4—H4119.9H13A—C13—H13B109.5
C5—C4—H4119.9C14—C13—H13C109.5
C6—C5—C4120.1 (6)H13A—C13—H13C109.5
C6—C5—N3119.6 (6)H13B—C13—H13C109.5
C4—C5—N3120.3 (6)O5—C14—O4125.4 (6)
C5—C6—C1120.7 (6)O5—C14—C13120.3 (5)
C5—C6—H6119.7O4—C14—C13114.3 (6)
C1—C6—H6119.7
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H16N3O3)(C2H3O2)]
Mr372.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.834 (3), 11.661 (2), 9.988 (2)
β (°) 99.86 (3)
V3)1587.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.27 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.703, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
9081, 3522, 2037
Rint0.087
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.184, 1.00
No. of reflections3522
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.61

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cu1—O31.946 (4)Cu1—N22.091 (5)
Cu1—O41.965 (4)Cu1—O5i2.265 (4)
Cu1—N11.992 (5)
O3—Cu1—O487.07 (17)N1—Cu1—N293.3 (2)
O3—Cu1—N190.17 (18)O3—Cu1—O5i92.62 (16)
O4—Cu1—N1161.58 (19)O4—Cu1—O5i107.21 (17)
O3—Cu1—N2173.93 (19)N1—Cu1—O5i91.10 (18)
O4—Cu1—N288.09 (19)N2—Cu1—O5i92.32 (18)
Symmetry code: (i) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds