Download citation
Download citation
link to html
The title complex, [Ba(C8H5NO5)(H2O)5]n, possesses a one-dimensional double-chain structure in which four-membered rings and 18-membered rings are arranged alternately, with the Ba center nine-coordinated by five water molecules and three carboxylate groups from three different ligands. Inter­molecular O—H...O hydrogen bonds and strong π–π inter­actions between pyridine rings extend these chains into a three-dimensional architecture (distance between pairs of adjacent pyridine rings = 3.306 Å; centroid–centroid separation = 3.424 Å).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058539/at2479sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058539/at2479Isup2.hkl
Contains datablock I

CCDC reference: 672780

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](Wav) = 0.000 Å
  • R factor = 0.016
  • wR factor = 0.042
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.914 Tmax scaled 0.743 Tmin scaled 0.574
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

5-Carboxyl-1-carboxymethyl-2-oxidopyridinium, as a dicarboxylic acid analogue of betaine (He & Feng, 2007), own versatile coordination behavior to metal ions according to the reported complexes, [Cu(ppbet)4Cl2](ClO4)2]n (Chen et al., 1998), and [Cu(4-OPA)2]n (Zhang et al., 2006). As illustrated in Fig.1, the title complex has a binuclear structure in which the center Ba2+ is nine-coordinated by five water molecules and three carboxylic groups from three different CCOP ligands in monodentate and chelate-bridging bidentate modes, forming a tricapped trigonal prism configuration as [Ba(5—OH-BDC)(H2O)3] (Shuai et al., 2007). It is interesting that two O atoms of formate groups combine the two Ba2+ to form a rhombus while two CCOP ligands adopting the opposite orientations act as bridges to join these rhombuses to be a one-dimensional double chain. It is worth to note intermolecular O—H···O hydrogen bonds are formed to link neighboring chains to form a three-dimensional network. Besides, strong offset face-to-face π-π interactions between pyridinum groups are also involved with the plane-to-plane distance of 3.306 (1) Å and the centroid-centroid distance of 3.424 (3) Å (Fig.2).

Related literature top

For related literature, see: Chen et al. (1998); He & Feng (2007); Shuai et al. (2007); Zhang et al. (2006).

Experimental top

A solution of BaCl2 (0.2497 g, 1 mmol) and H2CCOP (0.2025 g, 1 mmol) was mixed and stirred at room temperature. Then the mixture was stood at ambient temperature. By slow evaporation of the solvent, well formed colourless crystals, suitable for X-ray analysis were obtained after two days.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.97 Å, and Uiso=1.2Ueq (C). The H atoms bonded to O atoms were located in a difference Fourier maps and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. A view of the three dimensional framework of the title compound. The O—H···O interactions are depicted by dashed lines.
catena-Poly[pentaaqua(µ3-5-carboxylato-2-oxidopyridinium-1-αcetato)barium(II)] top
Crystal data top
[Ba(C8H5NO5)(H2O)5]Z = 2
Mr = 422.55F(000) = 412
Triclinic, P1Dx = 2.061 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0051 (14) ÅCell parameters from 11388 reflections
b = 9.7371 (19) Åθ = 2.0–27.5°
c = 11.201 (2) ŵ = 2.97 mm1
α = 112.88 (3)°T = 296 K
β = 95.63 (3)°Block, colourless
γ = 100.18 (3)°0.16 × 0.14 × 0.10 mm
V = 681.0 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3104 independent reflections
Radiation source: fine-focus sealed tube2971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.628, Tmax = 0.813k = 1212
11353 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.162P]
where P = (Fo2 + 2Fc2)/3
3104 reflections(Δ/σ)max = 0.003
211 parametersΔρmax = 0.58 e Å3
15 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ba(C8H5NO5)(H2O)5]γ = 100.18 (3)°
Mr = 422.55V = 681.0 (2) Å3
Triclinic, P1Z = 2
a = 7.0051 (14) ÅMo Kα radiation
b = 9.7371 (19) ŵ = 2.97 mm1
c = 11.201 (2) ÅT = 296 K
α = 112.88 (3)°0.16 × 0.14 × 0.10 mm
β = 95.63 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3104 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2971 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.813Rint = 0.023
11353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01615 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.58 e Å3
3104 reflectionsΔρmin = 0.45 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.600166 (14)0.757213 (11)0.602839 (10)0.02020 (5)
O10.4232 (3)0.72415 (16)0.35817 (16)0.0381 (4)
O1W0.1915 (2)0.69116 (18)0.61729 (16)0.0341 (3)
H1WA0.134 (4)0.748 (3)0.6738 (19)0.041*
H1WB0.109 (3)0.672 (3)0.5494 (17)0.041*
O20.3509 (2)0.49709 (16)0.36455 (14)0.0304 (3)
O2W0.8518 (2)0.62065 (18)0.43111 (15)0.0339 (3)
H2WA0.867 (4)0.645 (3)0.371 (2)0.041*
H2WB0.825 (4)0.5260 (19)0.401 (2)0.041*
O30.0848 (3)0.28461 (19)0.23870 (15)0.0426 (4)
O3W0.4998 (3)0.8244 (2)0.85769 (16)0.0448 (4)
H3WA0.572 (4)0.856 (3)0.929 (2)0.054*
H3WB0.415 (3)0.879 (3)0.871 (3)0.054*
O40.2545 (2)0.04168 (17)0.10934 (15)0.0330 (3)
O4W0.8181 (3)0.9993 (2)0.5519 (2)0.0471 (4)
H4WA0.929 (3)1.000 (3)0.545 (3)0.057*
H4WB0.805 (4)1.083 (2)0.592 (3)0.057*
O50.0335 (2)0.11523 (16)0.22398 (15)0.0321 (3)
O5W0.4634 (4)1.0222 (2)0.6837 (2)0.0610 (6)
H5WA0.494 (5)1.105 (3)0.677 (3)0.073*
H5WB0.404 (5)1.038 (4)0.745 (3)0.073*
N10.0942 (2)0.29402 (17)0.03292 (15)0.0224 (3)
C60.3557 (3)0.5812 (2)0.30310 (19)0.0243 (4)
C10.1429 (3)0.3611 (2)0.11786 (19)0.0265 (4)
C70.0354 (3)0.1403 (2)0.0908 (2)0.0249 (4)
H7A0.13500.13370.16060.030*
H7B0.10260.12450.02390.030*
C40.2792 (3)0.5095 (2)0.15796 (19)0.0232 (4)
C20.2571 (3)0.5157 (2)0.0563 (2)0.0276 (4)
H20.28760.56880.10790.033*
C30.3217 (3)0.5864 (2)0.0757 (2)0.0265 (4)
H30.39530.68730.11310.032*
C80.0716 (3)0.0126 (2)0.14697 (18)0.0227 (4)
C50.1647 (3)0.3642 (2)0.09955 (18)0.0227 (4)
H50.13360.31130.15130.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.02295 (7)0.01711 (6)0.01811 (7)0.00351 (4)0.00071 (4)0.00599 (5)
O10.0590 (10)0.0203 (7)0.0255 (7)0.0028 (7)0.0107 (7)0.0091 (6)
O1W0.0306 (8)0.0331 (8)0.0303 (8)0.0070 (6)0.0020 (6)0.0055 (7)
O20.0442 (8)0.0217 (7)0.0233 (7)0.0038 (6)0.0015 (6)0.0107 (6)
O2W0.0442 (9)0.0325 (8)0.0268 (8)0.0097 (7)0.0085 (7)0.0134 (7)
O30.0636 (11)0.0370 (9)0.0190 (8)0.0019 (8)0.0028 (7)0.0084 (7)
O3W0.0505 (10)0.0552 (11)0.0252 (8)0.0262 (9)0.0016 (7)0.0084 (8)
O40.0271 (7)0.0337 (8)0.0299 (8)0.0104 (6)0.0023 (6)0.0050 (6)
O4W0.0495 (10)0.0400 (9)0.0489 (11)0.0050 (8)0.0125 (9)0.0169 (9)
O50.0356 (8)0.0198 (7)0.0314 (8)0.0032 (6)0.0006 (6)0.0037 (6)
O5W0.0873 (15)0.0316 (9)0.0900 (17)0.0288 (10)0.0619 (13)0.0353 (10)
N10.0264 (8)0.0189 (7)0.0201 (8)0.0063 (6)0.0021 (6)0.0061 (6)
C60.0275 (9)0.0221 (9)0.0210 (9)0.0048 (7)0.0005 (7)0.0082 (7)
C10.0333 (10)0.0279 (10)0.0184 (9)0.0105 (8)0.0036 (8)0.0086 (8)
C70.0244 (9)0.0206 (9)0.0237 (10)0.0029 (7)0.0002 (7)0.0048 (7)
C40.0256 (9)0.0213 (9)0.0214 (9)0.0067 (7)0.0019 (7)0.0077 (7)
C20.0339 (10)0.0281 (10)0.0254 (10)0.0083 (8)0.0065 (8)0.0152 (8)
C30.0271 (10)0.0222 (9)0.0299 (11)0.0052 (7)0.0025 (8)0.0113 (8)
C80.0280 (9)0.0236 (9)0.0163 (9)0.0066 (7)0.0019 (7)0.0084 (7)
C50.0275 (9)0.0221 (9)0.0198 (9)0.0083 (7)0.0034 (7)0.0091 (7)
Geometric parameters (Å, º) top
Ba—O2i2.7132 (15)O4—C81.254 (2)
Ba—O5W2.7609 (19)O4W—H4WA0.787 (16)
Ba—O12.7673 (17)O4W—H4WB0.793 (16)
Ba—O5ii2.8129 (19)O5—C81.246 (2)
Ba—O2W2.8424 (18)O5—Baiii2.8129 (19)
Ba—O1W2.8560 (17)O5W—H5WA0.831 (17)
Ba—O4W2.856 (2)O5W—H5WB0.812 (17)
Ba—O3W2.8593 (19)N1—C51.364 (2)
Ba—O22.976 (2)N1—C11.384 (3)
Ba—C63.241 (2)N1—C71.461 (2)
Ba—Bai4.5027 (17)C6—C41.494 (3)
O1—C61.259 (2)C1—C21.429 (3)
O1W—H1WA0.855 (16)C7—C81.522 (3)
O1W—H1WB0.844 (16)C7—H7A0.9700
O2—C61.256 (2)C7—H7B0.9700
O2—Bai2.7132 (15)C4—C51.359 (3)
O2W—H2WA0.804 (16)C4—C31.418 (3)
O2W—H2WB0.826 (16)C2—C31.354 (3)
O3—C11.246 (2)C2—H20.9300
O3W—H3WA0.818 (17)C3—H30.9300
O3W—H3WB0.852 (17)C5—H50.9300
O2i—Ba—O5W149.47 (5)C6—Ba—Bai57.41 (5)
O2i—Ba—O1118.73 (5)C6—O1—Ba100.42 (12)
O5W—Ba—O181.72 (7)Ba—O1W—H1WA126.3 (17)
O2i—Ba—O5ii81.75 (5)Ba—O1W—H1WB117.4 (17)
O5W—Ba—O5ii96.55 (7)H1WA—O1W—H1WB97.3 (19)
O1—Ba—O5ii140.28 (5)C6—O2—Bai153.83 (13)
O2i—Ba—O2W71.99 (5)C6—O2—Ba90.53 (11)
O5W—Ba—O2W137.98 (5)Bai—O2—Ba104.56 (5)
O1—Ba—O2W75.98 (6)Ba—O2W—H2WA118.5 (19)
O5ii—Ba—O2W79.65 (5)Ba—O2W—H2WB114.0 (19)
O2i—Ba—O1W91.48 (5)H2WA—O2W—H2WB107 (2)
O5W—Ba—O1W69.51 (6)Ba—O3W—H3WA129 (2)
O1—Ba—O1W78.36 (6)Ba—O3W—H3WB111 (2)
O5ii—Ba—O1W138.31 (5)H3WA—O3W—H3WB104 (2)
O2W—Ba—O1W137.03 (5)Ba—O4W—H4WA118 (2)
O2i—Ba—O4W139.77 (5)Ba—O4W—H4WB118 (2)
O5W—Ba—O4W64.80 (6)H4WA—O4W—H4WB111 (2)
O1—Ba—O4W73.10 (6)C8—O5—Baiii139.64 (13)
O5ii—Ba—O4W70.48 (6)Ba—O5W—H5WA135 (2)
O2W—Ba—O4W74.76 (6)Ba—O5W—H5WB116 (2)
O1W—Ba—O4W128.59 (6)H5WA—O5W—H5WB106 (2)
O2i—Ba—O3W79.46 (6)C5—N1—C1122.79 (16)
O5W—Ba—O3W70.65 (6)C5—N1—C7119.92 (16)
O1—Ba—O3W137.63 (6)C1—N1—C7117.28 (16)
O5ii—Ba—O3W76.00 (6)O2—C6—O1122.98 (18)
O2W—Ba—O3W144.67 (5)O2—C6—C4119.01 (17)
O1W—Ba—O3W62.34 (6)O1—C6—C4118.01 (17)
O4W—Ba—O3W119.19 (6)O2—C6—Ba66.66 (10)
O2i—Ba—O275.44 (5)O1—C6—Ba57.12 (11)
O5W—Ba—O2114.74 (7)C4—C6—Ba169.13 (13)
O1—Ba—O245.08 (4)O3—C1—N1118.76 (18)
O5ii—Ba—O2147.62 (5)O3—C1—C2125.75 (19)
O2W—Ba—O271.66 (5)N1—C1—C2115.48 (17)
O1W—Ba—O265.78 (5)N1—C7—C8113.86 (16)
O4W—Ba—O2114.43 (5)N1—C7—H7A108.8
O3W—Ba—O2120.87 (6)C8—C7—H7A108.8
O2i—Ba—C696.73 (5)N1—C7—H7B108.8
O5W—Ba—C699.81 (7)C8—C7—H7B108.8
O1—Ba—C622.46 (4)H7A—C7—H7B107.7
O5ii—Ba—C6148.80 (5)C5—C4—C3117.30 (18)
O2W—Ba—C670.40 (5)C5—C4—C6119.97 (18)
O1W—Ba—C672.70 (6)C3—C4—C6122.73 (17)
O4W—Ba—C692.84 (6)C3—C2—C1121.25 (18)
O3W—Ba—C6134.65 (6)C3—C2—H2119.4
O2—Ba—C622.81 (4)C1—C2—H2119.4
O2i—Ba—Bai39.76 (3)C2—C3—C4121.21 (18)
O5W—Ba—Bai142.72 (5)C2—C3—H3119.4
O1—Ba—Bai79.81 (5)C4—C3—H3119.4
O5ii—Ba—Bai118.14 (4)O5—C8—O4125.32 (19)
O2W—Ba—Bai66.78 (4)O5—C8—C7116.23 (17)
O1W—Ba—Bai75.19 (5)O4—C8—C7118.40 (17)
O4W—Ba—Bai137.17 (4)C4—C5—N1121.72 (18)
O3W—Ba—Bai103.23 (5)C4—C5—H5119.1
O2—Ba—Bai35.68 (3)N1—C5—H5119.1
O2i—Ba—O1—C612.49 (15)O5W—Ba—C6—O136.77 (14)
O5W—Ba—O1—C6143.41 (14)O5ii—Ba—C6—O183.81 (16)
O5ii—Ba—O1—C6126.30 (13)O2W—Ba—C6—O1100.86 (14)
O2W—Ba—O1—C672.47 (14)O1W—Ba—C6—O1101.56 (14)
O1W—Ba—O1—C672.75 (14)O4W—Ba—C6—O128.14 (14)
O4W—Ba—O1—C6150.51 (15)O3W—Ba—C6—O1109.20 (15)
O3W—Ba—O1—C694.44 (15)O2—Ba—C6—O1170.0 (2)
O2—Ba—O1—C65.47 (12)Bai—Ba—C6—O1175.26 (15)
Bai—Ba—O1—C64.06 (13)O2i—Ba—C6—C4102.6 (7)
O2i—Ba—O2—C6158.39 (15)O5W—Ba—C6—C4103.2 (7)
O5W—Ba—O2—C652.26 (13)O1—Ba—C6—C466.4 (7)
O1—Ba—O2—C65.39 (12)O5ii—Ba—C6—C417.4 (7)
O5ii—Ba—O2—C6111.73 (13)O2W—Ba—C6—C434.5 (7)
O2W—Ba—O2—C682.90 (12)O1W—Ba—C6—C4167.9 (7)
O1W—Ba—O2—C6103.21 (13)O4W—Ba—C6—C438.3 (7)
O4W—Ba—O2—C619.94 (13)O3W—Ba—C6—C4175.6 (7)
O3W—Ba—O2—C6133.67 (12)O2—Ba—C6—C4123.6 (7)
Bai—Ba—O2—C6158.39 (15)Bai—Ba—C6—C4108.9 (7)
O2i—Ba—O2—Bai0.0C5—N1—C1—O3174.46 (19)
O5W—Ba—O2—Bai149.35 (5)C7—N1—C1—O34.3 (3)
O1—Ba—O2—Bai163.78 (9)C5—N1—C1—C25.9 (3)
O5ii—Ba—O2—Bai46.66 (10)C7—N1—C1—C2175.29 (17)
O2W—Ba—O2—Bai75.49 (6)C5—N1—C7—C895.9 (2)
O1W—Ba—O2—Bai98.40 (6)C1—N1—C7—C882.9 (2)
O4W—Ba—O2—Bai138.45 (6)O2—C6—C4—C515.6 (3)
O3W—Ba—O2—Bai67.94 (7)O1—C6—C4—C5164.69 (19)
C6—Ba—O2—Bai158.39 (15)Ba—C6—C4—C5134.7 (6)
Bai—O2—C6—O1136.1 (2)O2—C6—C4—C3164.05 (19)
Ba—O2—C6—O110.0 (2)O1—C6—C4—C315.7 (3)
Bai—O2—C6—C443.6 (4)Ba—C6—C4—C345.0 (8)
Ba—O2—C6—C4169.66 (16)O3—C1—C2—C3176.6 (2)
Bai—O2—C6—Ba126.1 (3)N1—C1—C2—C33.8 (3)
Ba—O1—C6—O211.0 (2)C1—C2—C3—C40.3 (3)
Ba—O1—C6—C4168.71 (15)C5—C4—C3—C22.5 (3)
O2i—Ba—C6—O221.03 (14)C6—C4—C3—C2177.12 (19)
O5W—Ba—C6—O2133.21 (12)Baiii—O5—C8—O4157.84 (15)
O1—Ba—C6—O2170.0 (2)Baiii—O5—C8—C724.9 (3)
O5ii—Ba—C6—O2106.21 (13)N1—C7—C8—O5163.47 (17)
O2W—Ba—C6—O289.16 (12)N1—C7—C8—O419.0 (3)
O1W—Ba—C6—O268.42 (12)C3—C4—C5—N10.5 (3)
O4W—Ba—C6—O2161.88 (12)C6—C4—C5—N1179.13 (17)
O3W—Ba—C6—O260.78 (14)C1—N1—C5—C43.9 (3)
Bai—Ba—C6—O214.77 (10)C7—N1—C5—C4177.34 (18)
O2i—Ba—C6—O1168.99 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5iv0.86 (2)2.02 (2)2.863 (2)169 (2)
O1W—H1WB···O2Wv0.84 (2)1.99 (2)2.796 (2)160 (2)
O2W—H2WA···O3vi0.80 (2)1.90 (2)2.698 (2)176 (3)
O2W—H2WB···O1Wi0.83 (2)2.03 (2)2.822 (2)162 (3)
O3W—H3WA···O4i0.82 (2)2.02 (2)2.829 (3)174 (3)
O3W—H3WB···O4iv0.85 (2)2.06 (2)2.893 (2)167 (3)
O4W—H4WA···O4Wvii0.79 (2)2.17 (2)2.903 (4)156 (3)
O4W—H4WB···O3ii0.79 (2)2.51 (3)2.992 (3)120 (2)
O4W—H4WB···O1viii0.79 (2)2.61 (2)3.310 (3)149 (3)
O5W—H5WA···O1viii0.83 (2)1.87 (2)2.689 (2)172 (3)
O5W—H5WB···O4iv0.81 (2)2.02 (2)2.823 (3)171 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+2, y+2, z+1; (viii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ba(C8H5NO5)(H2O)5]
Mr422.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0051 (14), 9.7371 (19), 11.201 (2)
α, β, γ (°)112.88 (3), 95.63 (3), 100.18 (3)
V3)681.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
11353, 3104, 2971
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.01
No. of reflections3104
No. of parameters211
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
Ba—O2i2.7132 (15)Ba—O1W2.8560 (17)
Ba—O5W2.7609 (19)Ba—O4W2.856 (2)
Ba—O12.7673 (17)Ba—O3W2.8593 (19)
Ba—O5ii2.8129 (19)Ba—O22.976 (2)
Ba—O2W2.8424 (18)
O2i—Ba—O5ii81.75 (5)O2i—Ba—O4W139.77 (5)
O1—Ba—O2W75.98 (6)O1—Ba—O3W137.63 (6)
O5W—Ba—O1W69.51 (6)O2W—Ba—O3W144.67 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5iii0.855 (16)2.019 (18)2.863 (2)169 (2)
O1W—H1WB···O2Wiv0.844 (16)1.988 (19)2.796 (2)160 (2)
O2W—H2WA···O3v0.804 (16)1.897 (16)2.698 (2)176 (3)
O2W—H2WB···O1Wi0.826 (16)2.026 (17)2.822 (2)162 (3)
O3W—H3WA···O4i0.818 (17)2.015 (18)2.829 (3)174 (3)
O3W—H3WB···O4iii0.852 (17)2.056 (18)2.893 (2)167 (3)
O4W—H4WA···O4Wvi0.787 (16)2.166 (19)2.903 (4)156 (3)
O4W—H4WB···O3ii0.793 (16)2.51 (3)2.992 (3)120 (2)
O4W—H4WB···O1vii0.793 (16)2.608 (19)3.310 (3)149 (3)
O5W—H5WA···O1vii0.831 (17)1.865 (17)2.689 (2)172 (3)
O5W—H5WB···O4iii0.812 (17)2.018 (17)2.823 (3)171 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x+2, y+2, z+1; (vii) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds