Download citation
Download citation
link to html
In the title compound, [Ni(C8H5N4O2)2(H2O)4]·2H2O, the NiII ion lies on an inversion centre and is coordinated by two N atoms from two 4-(tetra­zol-1-yl)benzoate ligands and four O atoms from four water mol­ecules in a slightly distorted octa­hedral geometry. In addition, there are two uncoordinated water mol­ecules in the structure. The crystal structure is stabilized by inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060138/at2494sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060138/at2494Isup2.hkl
Contains datablock I

CCDC reference: 672743

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.031
  • wR factor = 0.068
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.48 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N1 -NI1 -N1 -C1 11.00 0.00 2.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 N1 -NI1 -N1 -N2 6.00 0.00 2.656 1.555 1.555 1.555 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal-organic frameworks (MOFs) containing 1H-tetrazol and its derivatives have attracted great attentions of many research groups due to their intriguing structural diversity and potential applications in luminescence, magnetism and gas storage (Dinca, et al., 2006; Li, et al., 2007; Bronisz, 2007). However, there are rare reports of ligands based on tetrazol and carboxylate groups as building blocks for the construction of MOFs. So we synthesized several coordination compounds by such ligands. And here we report the structure of title compound (I).

The structure of (I) consists of discrete neutral unit [Ni(C8H5N4O2)2(H2O)2] and two lattice water molecules (Fig. 1), atom Ni1 occupies an inversion centre and is coordinated by two N atoms from two 4-(tetrazol-1- yl)benzoate ligands and four O atoms from four water molecules in a distorted octahedral geometry. The Ni1—N1 distance of 2.0927 (15)Å is slightly lengthened, while the distances of Ni1—O1W and Ni1—O2W bonds (Table 1) is slightly shorten compared with the values observed in related complex (Zhang et al., 2007). The crystal stacking of (I) (Fig. 2) is stabilized by intermolecular O—H···O hydrogen bonds (Table 2) (Li, et al., 2006), which is similar to that in related reports (Zou, et al., 2005; Zhang, et al., 2007).

Related literature top

For related literature, see: Zhang et al. (2007); Zou et al. (2005); Bronisz (2007); Dinca et al. (2006); Li et al. (2006, 2007).

Experimental top

A solution of NiCl2.6H2O (24 mg, 0.1 mmol) in water (5 ml) was added to a solution of 4-(tetrazol-1-yl) benzoic acid (38 mg, 0.2 mmol) and sodium hydroxide (8 mg, 0.2 mmol) in methanol (5 ml). The reaction mixture was stirred for 30 min and then filtered. Green crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation after two weeks [yield: 40%].

Refinement top

H atoms bounded to C atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water was located in Fourier difference map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 40% probability displacement ellipsoids. [Symmetry code: (A) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. A portion of the crystal stacking structure, showing the intermolecular O—H···O hydrogen bonds (dashed lines).
Tetraaquabis[4-(tetrazol-1-yl)benzoato-κN4]nickel(II) dihydrate top
Crystal data top
[Ni(C8H5N4O2)2(H2O)4]·2H2OZ = 1
Mr = 545.13F(000) = 282
Triclinic, P1Dx = 1.711 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3830 (15) ÅCell parameters from 5360 reflections
b = 7.5819 (15) Åθ = 3.0–27.8°
c = 10.712 (2) ŵ = 0.99 mm1
α = 96.90 (3)°T = 293 K
β = 94.62 (3)°Block, green
γ = 116.00 (3)°0.3 × 0.3 × 0.3 mm
V = 529.0 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2419 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.758, Tmax = 0.766k = 99
5651 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C8H5N4O2)2(H2O)4]·2H2Oγ = 116.00 (3)°
Mr = 545.13V = 529.0 (2) Å3
Triclinic, P1Z = 1
a = 7.3830 (15) ÅMo Kα radiation
b = 7.5819 (15) ŵ = 0.99 mm1
c = 10.712 (2) ÅT = 293 K
α = 96.90 (3)°0.3 × 0.3 × 0.3 mm
β = 94.62 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2221 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.766Rint = 0.022
5651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.25 e Å3
2419 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.01921 (10)
O2W0.7492 (2)0.0451 (3)0.53264 (13)0.0276 (3)
O3W0.0848 (2)0.2902 (2)0.64256 (16)0.0335 (3)
N10.5324 (2)0.1275 (2)0.68998 (14)0.0241 (3)
O1W0.6797 (2)0.2685 (2)0.45392 (14)0.0298 (3)
O20.1970 (2)0.3646 (2)1.40415 (12)0.0319 (3)
N40.4656 (2)0.2020 (2)0.87325 (13)0.0222 (3)
O10.0689 (2)0.3363 (2)1.27599 (13)0.0389 (4)
N20.6909 (3)0.1679 (3)0.77918 (15)0.0364 (4)
C10.3960 (3)0.1505 (3)0.75005 (16)0.0270 (4)
H1A0.27010.13340.71250.032*
N30.6530 (3)0.2133 (3)0.88977 (16)0.0381 (4)
C80.1002 (3)0.3386 (3)1.29574 (17)0.0259 (4)
C60.3882 (3)0.3152 (3)1.20129 (17)0.0289 (4)
H6A0.45670.34341.28350.035*
C40.1001 (3)0.2715 (3)1.06100 (18)0.0287 (4)
H4A0.02680.26961.04810.034*
C20.3748 (3)0.2411 (3)0.97907 (16)0.0222 (4)
C50.1985 (3)0.3081 (3)1.18314 (16)0.0232 (4)
C70.4783 (3)0.2814 (3)1.09967 (17)0.0284 (4)
H7A0.60640.28571.11230.034*
C30.1874 (3)0.2377 (3)0.95800 (17)0.0294 (4)
H3A0.12080.21290.87570.035*
H1WB0.716 (4)0.371 (4)0.502 (3)0.043 (7)*
H2WB0.741 (4)0.138 (4)0.559 (3)0.056 (9)*
H1WA0.762 (4)0.288 (4)0.408 (3)0.059 (9)*
H3WB0.069 (4)0.372 (4)0.675 (3)0.044 (8)*
H2WA0.847 (5)0.048 (5)0.574 (3)0.059 (9)*
H3WA0.118 (5)0.321 (5)0.572 (3)0.074 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02186 (18)0.02399 (18)0.01459 (16)0.01276 (14)0.00607 (12)0.00174 (12)
O2W0.0278 (8)0.0313 (8)0.0277 (7)0.0172 (7)0.0047 (6)0.0034 (7)
O3W0.0370 (8)0.0400 (9)0.0309 (8)0.0228 (7)0.0111 (7)0.0070 (7)
N10.0278 (8)0.0300 (8)0.0179 (7)0.0161 (7)0.0066 (6)0.0026 (6)
O1W0.0365 (8)0.0268 (8)0.0257 (7)0.0123 (7)0.0152 (7)0.0035 (6)
O20.0464 (9)0.0384 (8)0.0177 (7)0.0247 (7)0.0101 (6)0.0039 (6)
N40.0230 (8)0.0309 (8)0.0158 (7)0.0149 (7)0.0065 (6)0.0016 (6)
O10.0377 (8)0.0605 (10)0.0299 (8)0.0311 (8)0.0159 (6)0.0067 (7)
N20.0298 (9)0.0620 (12)0.0201 (8)0.0258 (9)0.0048 (7)0.0031 (8)
C10.0283 (10)0.0403 (11)0.0168 (9)0.0200 (9)0.0050 (7)0.0016 (8)
N30.0298 (9)0.0673 (13)0.0222 (8)0.0288 (9)0.0043 (7)0.0023 (8)
C80.0350 (11)0.0245 (9)0.0214 (9)0.0151 (8)0.0118 (8)0.0036 (7)
C60.0326 (11)0.0414 (11)0.0163 (9)0.0202 (9)0.0055 (8)0.0031 (8)
C40.0253 (10)0.0427 (12)0.0226 (9)0.0197 (9)0.0060 (8)0.0029 (8)
C20.0272 (9)0.0261 (9)0.0158 (8)0.0136 (8)0.0086 (7)0.0028 (7)
C50.0282 (10)0.0258 (9)0.0177 (8)0.0135 (8)0.0087 (7)0.0031 (7)
C70.0265 (10)0.0445 (12)0.0198 (9)0.0212 (9)0.0054 (8)0.0042 (8)
C30.0297 (10)0.0463 (12)0.0160 (9)0.0213 (10)0.0040 (7)0.0025 (8)
Geometric parameters (Å, º) top
Ni1—O2Wi2.0252 (15)N4—N31.344 (2)
Ni1—O2W2.0252 (15)N4—C21.428 (2)
Ni1—O1W2.0315 (16)O1—C81.241 (2)
Ni1—O1Wi2.0315 (16)N2—N31.281 (2)
Ni1—N1i2.0927 (15)C1—H1A0.9300
Ni1—N12.0927 (15)C8—C51.502 (2)
O2W—H2WB0.77 (3)C6—C51.375 (3)
O2W—H2WA0.80 (3)C6—C71.376 (3)
O3W—H3WB0.74 (3)C6—H6A0.9300
O3W—H3WA0.84 (3)C4—C31.375 (3)
N1—C11.299 (2)C4—C51.378 (3)
N1—N21.346 (2)C4—H4A0.9300
O1W—H1WB0.80 (3)C2—C31.371 (3)
O1W—H1WA0.79 (3)C2—C71.374 (3)
O2—C81.259 (2)C7—H7A0.9300
N4—C11.323 (2)C3—H3A0.9300
O2Wi—Ni1—O2W180.00 (8)N3—N4—C2121.12 (15)
O2Wi—Ni1—O1W90.81 (7)N3—N2—N1110.27 (15)
O2W—Ni1—O1W89.19 (7)N1—C1—N4108.89 (17)
O2Wi—Ni1—O1Wi89.19 (7)N1—C1—H1A125.6
O2W—Ni1—O1Wi90.81 (7)N4—C1—H1A125.6
O1W—Ni1—O1Wi180.0N2—N3—N4106.69 (16)
O2Wi—Ni1—N1i92.56 (7)O1—C8—O2124.76 (17)
O2W—Ni1—N1i87.44 (7)O1—C8—C5118.33 (17)
O1W—Ni1—N1i88.07 (7)O2—C8—C5116.91 (17)
O1Wi—Ni1—N1i91.93 (7)C5—C6—C7120.97 (18)
O2Wi—Ni1—N187.44 (7)C5—C6—H6A119.5
O2W—Ni1—N192.56 (7)C7—C6—H6A119.5
O1W—Ni1—N191.93 (7)C3—C4—C5120.80 (18)
O1Wi—Ni1—N188.07 (7)C3—C4—H4A119.6
N1i—Ni1—N1180.0C5—C4—H4A119.6
Ni1—O2W—H2WB120 (2)C3—C2—C7121.79 (17)
Ni1—O2W—H2WA115 (2)C3—C2—N4119.42 (16)
H2WB—O2W—H2WA106 (3)C7—C2—N4118.79 (16)
H3WB—O3W—H3WA106 (3)C6—C5—C4119.21 (17)
C1—N1—N2106.30 (15)C6—C5—C8119.98 (17)
C1—N1—Ni1128.19 (13)C4—C5—C8120.81 (17)
N2—N1—Ni1124.50 (12)C2—C7—C6118.51 (18)
Ni1—O1W—H1WB122.5 (18)C2—C7—H7A120.7
Ni1—O1W—H1WA125 (2)C6—C7—H7A120.7
H1WB—O1W—H1WA106 (3)C2—C3—C4118.70 (17)
C1—N4—N3107.85 (15)C2—C3—H3A120.6
C1—N4—C2131.03 (16)C4—C3—H3A120.6
O2Wi—Ni1—N1—C119.06 (17)C1—N4—C2—C33.8 (3)
O2W—Ni1—N1—C1160.94 (17)N3—N4—C2—C3176.84 (18)
O1W—Ni1—N1—C1109.78 (17)C1—N4—C2—C7176.2 (2)
O1Wi—Ni1—N1—C170.22 (17)N3—N4—C2—C73.1 (3)
N1i—Ni1—N1—C1106 (100)C7—C6—C5—C41.7 (3)
O2Wi—Ni1—N1—N2174.01 (16)C7—C6—C5—C8177.90 (18)
O2W—Ni1—N1—N25.99 (16)C3—C4—C5—C61.5 (3)
O1W—Ni1—N1—N283.29 (16)C3—C4—C5—C8178.04 (18)
O1Wi—Ni1—N1—N296.71 (16)O1—C8—C5—C6178.18 (18)
N1i—Ni1—N1—N261 (100)O2—C8—C5—C61.9 (3)
C1—N1—N2—N30.2 (2)O1—C8—C5—C42.3 (3)
Ni1—N1—N2—N3169.14 (14)O2—C8—C5—C4177.66 (18)
N2—N1—C1—N40.5 (2)C3—C2—C7—C61.2 (3)
Ni1—N1—C1—N4168.30 (12)N4—C2—C7—C6178.79 (17)
N3—N4—C1—N10.6 (2)C5—C6—C7—C20.3 (3)
C2—N4—C1—N1178.81 (17)C7—C2—C3—C41.4 (3)
N1—N2—N3—N40.2 (2)N4—C2—C3—C4178.65 (18)
C1—N4—N3—N20.5 (2)C5—C4—C3—C20.0 (3)
C2—N4—N3—N2179.00 (17)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1ii0.79 (3)1.92 (3)2.704 (2)171 (3)
O1W—H1WB···O2iii0.80 (3)1.93 (3)2.724 (2)172 (3)
O2W—H2WB···O2iv0.77 (3)2.04 (3)2.771 (2)160 (3)
O2W—H2WA···O3Wv0.80 (3)1.91 (3)2.697 (3)168 (3)
O3W—H3WB···O1vi0.74 (3)2.21 (3)2.917 (2)162 (3)
O3W—H3WA···O2vii0.84 (3)1.96 (3)2.793 (2)173 (3)
Symmetry codes: (ii) x+1, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+2; (v) x+1, y, z; (vi) x, y+1, z+2; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C8H5N4O2)2(H2O)4]·2H2O
Mr545.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3830 (15), 7.5819 (15), 10.712 (2)
α, β, γ (°)96.90 (3), 94.62 (3), 116.00 (3)
V3)529.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.758, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
5651, 2419, 2221
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.068, 1.14
No. of reflections2419
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O2W2.0252 (15)Ni1—N12.0927 (15)
Ni1—O1W2.0315 (16)
O2W—Ni1—O1W89.19 (7)O1W—Ni1—N191.93 (7)
O2W—Ni1—N192.56 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.79 (3)1.92 (3)2.704 (2)171 (3)
O1W—H1WB···O2ii0.80 (3)1.93 (3)2.724 (2)172 (3)
O2W—H2WB···O2iii0.77 (3)2.04 (3)2.771 (2)160 (3)
O2W—H2WA···O3Wiv0.80 (3)1.91 (3)2.697 (3)168 (3)
O3W—H3WB···O1v0.74 (3)2.21 (3)2.917 (2)162 (3)
O3W—H3WA···O2vi0.84 (3)1.96 (3)2.793 (2)173 (3)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x+1, y, z; (v) x, y+1, z+2; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds