Download citation
Download citation
link to html
In the title heteronuclear NiII–SmIII complex (systematic name: {6,6′-dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyli­dyne)]diphenolato-1κ4O1,O1',O6,O6':2κ4O1,N,N′O1′}tri­nitrato-1κ6O,O′-samarium(III)nickel(II)), [NiSm(C20H22N2O4)(NO3)3], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-ethoxy­salicyl­idene)ethyl­enediamine (H2L) the Ni and Sm atoms are doubly bridged by two phenolate O atoms provided by the Schiff base ligand. The coordination of Ni is square planar with the donor centres of two imine N atoms and two phenolate O atoms. The samarium(III) centre has a deca­coordination environment of O atoms, involving the phenolate O atoms, two eth­oxy O atoms and two O atoms each from the three nitrates. Some weak C—H...O and O...Ni [3.381 (4) Å] inter­actions generate a two-dimensional zigzag sheet.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807061508/at2499sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807061508/at2499Isup2.hkl
Contains datablock I

CCDC reference: 672774

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.045
  • wR factor = 0.084
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 49 Perc. PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT230_ALERT_2_C Hirshfeld Test Diff for O9 - N4 .. 5.35 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 - O9 .. 5.55 su PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.20 From the CIF: _reflns_number_total 6073 Count of symmetry unique reflns 3485 Completeness (_total/calc) 174.26% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2588 Fraction of Friedel pairs measured 0.743 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui et al. 2006), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—SmIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine (H2L).

Complex (I) crystallizes in the space group P212121, with nickel and samarium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by nickel(II), while samarium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Ni1/O1/O2 and Sm1/O1/O2 is 6.28 (29)° suggesting that the bridging moiety is almost planar, with the deviation of atoms from the least squares Ni1/O1/O2/Sm1 plane being -0.0535 (2)Å for Ni, -0.0354 (3)Å for Sm, 0.0437 (2)Å for O1 and 0.0451 (2)Å for O2.

The samarium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to samarium to complete the decacoordination. The three kinds of Sm—O bond distances are significantly different, the shortest being the Sm—O(phenolate) and longest being the Sm—O(ethoxy) separations.

The coordination of nickel(II) is approximately square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0798 (2) Å, while Ni1 is 0.0093 (2)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10···Ni1 = 3.381 (4) Å, C7—H7···O13i = 3.320 (10), C9—H9A···O13ii = 3.283 (11), C17—H17A···O8iii=3.536 (9) and C20—H20c···O7iv = 3.308 (12); symmetry codes: (i) -x + 2, y - 1/2, -z + 3/2; (ii) 1 + x, y, z; (iii) 1/2 + x, 3/2 - y, 2 - z; (iv) x - 1/2, 1/2 - y, 2 - z.) these link the molecules into a two-dimensional zigzag sheet (Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006).

Experimental top

H2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of nickel(II) acetate tetrahydrate (0.217 g, 1 mmol) with H2L (0.356 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of samarium(III) nitrate hexahydrate (0.445 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C20H22N5NiO13Sm: C 32.05, H 2.96, N 9.34, Ni 7.83, Sm 20.06%; found: C 32.15, H 2.98, N 9.22, Ni 7.88, Sm 20.22%. IR(KBr, cm-1): 1642(C=N), 1386,1490(nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances in the range 0.93 - 0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-\1κ4O1,O1',O6,O6':2κ4O1,N,N'O1'}trinitrato-1κ6O,O'-σamarium(III)nickel(II) top
Crystal data top
[NiSm(C20H22N2O4)(NO3)3]F(000) = 1484
Mr = 749.49Dx = 1.992 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4344 reflections
a = 8.6097 (14) Åθ = 1.9–28.2°
b = 13.750 (2) ŵ = 3.16 mm1
c = 21.113 (3) ÅT = 293 K
V = 2499.4 (7) Å3Block, red
Z = 40.26 × 0.14 × 0.07 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6073 independent reflections
Radiation source: fine-focus sealed tube2970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 0 pixels mm-1θmax = 28.2°, θmin = 1.9°
ϕ and ω scanh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1718
Tmin = 0.494, Tmax = 0.821l = 2827
18707 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.58 e Å3
6073 reflectionsΔρmin = 1.58 e Å3
362 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00131 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2588 Freidel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.007 (19)
Crystal data top
[NiSm(C20H22N2O4)(NO3)3]V = 2499.4 (7) Å3
Mr = 749.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6097 (14) ŵ = 3.16 mm1
b = 13.750 (2) ÅT = 293 K
c = 21.113 (3) Å0.26 × 0.14 × 0.07 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6073 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2970 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.821Rint = 0.089
18707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.084Δρmax = 1.58 e Å3
S = 1.00Δρmin = 1.58 e Å3
6073 reflectionsAbsolute structure: Flack (1983), 2588 Freidel pairs
362 parametersAbsolute structure parameter: 0.007 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.74822 (5)0.49875 (3)0.904649 (15)0.04039 (13)
Ni11.06957 (11)0.43994 (7)0.81466 (5)0.0377 (3)
O20.9712 (5)0.5510 (4)0.8455 (2)0.0368 (12)
O10.9232 (7)0.3732 (3)0.8629 (2)0.0429 (14)
C161.0300 (9)0.6379 (6)0.8438 (4)0.040 (2)
N21.1979 (6)0.5089 (5)0.7614 (3)0.0415 (17)
O50.7374 (7)0.5086 (5)1.0229 (2)0.0609 (14)
C10.9166 (11)0.2794 (6)0.8738 (4)0.039 (2)
O60.9601 (6)0.4659 (4)0.9879 (3)0.0578 (18)
O30.6921 (6)0.3156 (4)0.9304 (2)0.0418 (15)
N11.1761 (8)0.3307 (5)0.7897 (3)0.040 (2)
C111.1493 (10)0.6679 (6)0.8038 (4)0.039 (2)
C20.7939 (8)0.2430 (5)0.9086 (4)0.039 (2)
C121.2037 (9)0.7641 (6)0.8051 (4)0.046 (2)
H121.27810.78450.77610.056*
C71.1482 (10)0.2432 (7)0.8103 (5)0.050 (3)
H71.21780.19520.79770.060*
C190.5526 (9)0.2857 (6)0.9639 (4)0.047 (2)
H19A0.50740.34180.98480.057*
H19B0.58030.23870.99620.057*
C61.0246 (9)0.2123 (5)0.8494 (4)0.0364 (19)
O40.8532 (6)0.6719 (4)0.9247 (2)0.0404 (14)
C150.9653 (10)0.7080 (6)0.8862 (4)0.037 (2)
C40.8980 (11)0.0817 (6)0.9028 (4)0.054 (2)
H40.89400.01640.91420.064*
N30.8787 (9)0.4933 (6)1.0341 (3)0.0523 (17)
C101.2268 (11)0.5986 (6)0.7611 (4)0.048 (2)
H101.30030.62210.73270.058*
O70.9325 (7)0.4984 (5)1.0867 (3)0.0793 (17)
C200.4353 (10)0.2419 (6)0.9207 (4)0.064 (3)
H20A0.40920.28770.88810.096*
H20B0.34370.22560.94440.096*
H20C0.47740.18410.90180.096*
C51.0135 (10)0.1148 (6)0.8660 (4)0.048 (2)
H51.08800.07130.85120.058*
C131.1476 (11)0.8275 (6)0.8488 (4)0.058 (2)
H131.19070.88930.85190.070*
O110.6799 (7)0.4591 (5)0.7895 (3)0.0548 (19)
O90.4640 (7)0.4655 (4)0.8904 (3)0.0610 (18)
N50.6398 (9)0.5460 (7)0.7739 (4)0.054 (2)
O120.6472 (7)0.6093 (4)0.8170 (3)0.0569 (16)
O80.5117 (7)0.5881 (5)0.9497 (3)0.0611 (19)
N40.4132 (9)0.5368 (6)0.9234 (4)0.053 (2)
O100.2729 (8)0.5498 (6)0.9315 (3)0.083 (2)
C170.7801 (9)0.7381 (5)0.9708 (3)0.043 (2)
H17A0.86030.77600.99160.051*
H17B0.72750.69991.00290.051*
C30.7828 (10)0.1467 (6)0.9240 (4)0.045 (2)
H30.70010.12430.94830.054*
C81.3125 (10)0.3502 (7)0.7503 (4)0.055 (3)
H8A1.33080.29710.72110.066*
H8B1.40430.35890.77640.066*
C91.2742 (10)0.4432 (6)0.7147 (3)0.050 (2)
H9A1.36800.47280.69820.060*
H9B1.20470.42960.67970.060*
C141.0292 (9)0.8018 (6)0.8880 (4)0.047 (2)
H140.98990.84720.91640.057*
O130.5995 (7)0.5672 (5)0.7215 (3)0.083 (2)
C180.6670 (10)0.8050 (6)0.9409 (4)0.058 (3)
H18A0.71860.84340.90930.087*
H18B0.62350.84700.97260.087*
H18C0.58540.76790.92140.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0467 (2)0.03015 (18)0.04428 (19)0.0004 (3)0.0029 (3)0.0022 (2)
Ni10.0425 (6)0.0292 (5)0.0414 (5)0.0002 (5)0.0048 (5)0.0048 (5)
O20.043 (3)0.023 (3)0.045 (3)0.003 (3)0.005 (3)0.002 (3)
O10.062 (4)0.021 (3)0.046 (3)0.004 (3)0.007 (3)0.002 (2)
C160.049 (5)0.041 (5)0.030 (4)0.006 (4)0.002 (4)0.008 (4)
N20.050 (4)0.028 (4)0.047 (4)0.008 (4)0.005 (3)0.004 (4)
O50.075 (4)0.071 (4)0.037 (3)0.007 (6)0.011 (3)0.009 (3)
C10.040 (5)0.025 (5)0.051 (5)0.004 (4)0.007 (5)0.007 (4)
O60.044 (3)0.075 (5)0.054 (4)0.008 (3)0.002 (3)0.005 (3)
O30.051 (4)0.027 (3)0.048 (3)0.009 (3)0.015 (3)0.008 (2)
N10.044 (5)0.034 (4)0.043 (5)0.003 (4)0.005 (4)0.011 (4)
C110.048 (6)0.026 (5)0.044 (6)0.000 (4)0.000 (5)0.000 (4)
C20.047 (6)0.024 (4)0.044 (5)0.000 (4)0.007 (4)0.000 (4)
C120.048 (6)0.036 (5)0.055 (6)0.011 (4)0.013 (4)0.000 (4)
C70.044 (6)0.042 (6)0.064 (6)0.018 (5)0.002 (5)0.024 (5)
C190.044 (5)0.047 (5)0.052 (6)0.006 (5)0.004 (5)0.005 (4)
C60.039 (5)0.025 (4)0.045 (5)0.007 (4)0.007 (5)0.003 (4)
O40.054 (4)0.026 (3)0.041 (3)0.001 (3)0.008 (3)0.010 (2)
C150.046 (6)0.028 (5)0.039 (5)0.002 (4)0.006 (4)0.004 (4)
C40.077 (7)0.027 (5)0.057 (5)0.006 (5)0.004 (5)0.005 (4)
N30.065 (5)0.043 (4)0.049 (5)0.005 (5)0.001 (4)0.011 (5)
C100.042 (6)0.064 (6)0.038 (5)0.012 (5)0.000 (5)0.001 (4)
O70.120 (5)0.069 (4)0.049 (4)0.011 (6)0.026 (4)0.002 (5)
C200.057 (6)0.057 (6)0.078 (7)0.018 (6)0.014 (6)0.019 (5)
C50.055 (6)0.034 (5)0.055 (6)0.006 (4)0.001 (5)0.002 (4)
C130.074 (6)0.029 (5)0.072 (6)0.024 (5)0.003 (6)0.002 (5)
O110.066 (4)0.058 (4)0.040 (4)0.013 (4)0.000 (3)0.021 (3)
O90.068 (4)0.037 (4)0.078 (5)0.003 (3)0.013 (4)0.012 (3)
N50.043 (5)0.065 (6)0.053 (6)0.007 (5)0.004 (4)0.004 (5)
O120.070 (4)0.041 (4)0.060 (4)0.008 (3)0.014 (4)0.001 (3)
O80.056 (4)0.058 (5)0.069 (4)0.017 (3)0.004 (3)0.025 (3)
N40.039 (5)0.060 (6)0.059 (5)0.006 (4)0.001 (4)0.015 (4)
O100.052 (4)0.099 (5)0.098 (5)0.009 (5)0.003 (4)0.013 (4)
C170.059 (7)0.032 (4)0.038 (5)0.006 (5)0.006 (4)0.011 (3)
C30.050 (7)0.033 (5)0.051 (5)0.012 (5)0.009 (4)0.003 (3)
C80.045 (6)0.061 (7)0.060 (6)0.005 (5)0.010 (5)0.014 (5)
C90.061 (6)0.044 (5)0.045 (4)0.001 (5)0.001 (5)0.009 (4)
C140.043 (6)0.034 (5)0.065 (7)0.001 (4)0.006 (5)0.016 (4)
O130.097 (5)0.106 (5)0.045 (4)0.039 (5)0.024 (4)0.023 (4)
C180.062 (6)0.037 (5)0.076 (7)0.008 (5)0.003 (5)0.003 (5)
Geometric parameters (Å, º) top
Sm1—O12.455 (5)C19—H19A0.9700
Sm1—O22.401 (5)C19—H19B0.9700
Sm1—O32.621 (5)C6—C51.390 (10)
Sm1—O42.581 (5)O4—C151.356 (9)
Sm1—O52.503 (4)O4—C171.473 (8)
Sm1—O62.573 (5)C15—C141.404 (11)
Sm1—O82.561 (5)C4—C51.341 (10)
Sm1—O92.507 (6)C4—C31.408 (10)
Sm1—O112.560 (5)C4—H40.9300
Sm1—O122.548 (6)N3—O71.205 (7)
Ni1—O11.861 (5)C10—H100.9300
Ni1—O21.863 (5)C20—H20A0.9600
Ni1—N11.837 (7)C20—H20B0.9600
Ni1—N21.840 (6)C20—H20C0.9600
O2—C161.298 (9)C5—H50.9300
O1—C11.312 (8)C13—C141.359 (11)
C16—C111.391 (10)C13—H130.9300
C16—C151.429 (10)O11—N51.287 (9)
N2—C101.257 (9)O9—N41.279 (9)
N2—C91.490 (9)N5—O131.195 (9)
O5—N31.257 (8)N5—O121.261 (9)
C1—C21.381 (10)O8—N41.235 (8)
C1—C61.407 (11)N4—O101.233 (9)
O6—N31.259 (7)C17—C181.481 (10)
O3—C21.405 (8)C17—H17A0.9700
O3—C191.453 (9)C17—H17B0.9700
N1—C71.303 (10)C3—H30.9300
N1—C81.463 (10)C8—C91.519 (11)
C11—C121.404 (10)C8—H8A0.9700
C11—C101.472 (11)C8—H8B0.9700
C2—C31.368 (10)C9—H9A0.9700
C12—C131.357 (11)C9—H9B0.9700
C12—H120.9300C14—H140.9300
C7—C61.412 (11)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C19—C201.488 (11)C18—H18C0.9600
O2—Sm1—O162.13 (17)C13—C12—H12120.0
O2—Sm1—O5122.20 (18)C11—C12—H12120.0
O1—Sm1—O5114.80 (19)N1—C7—C6127.7 (8)
O2—Sm1—O9140.61 (17)N1—C7—H7116.1
O1—Sm1—O9115.33 (19)C6—C7—H7116.1
O5—Sm1—O995.3 (2)O3—C19—C20112.2 (7)
O2—Sm1—O1273.54 (18)O3—C19—H19A109.2
O1—Sm1—O12111.58 (17)C20—C19—H19A109.2
O5—Sm1—O12132.8 (2)O3—C19—H19B109.2
O9—Sm1—O1271.85 (18)C20—C19—H19B109.2
O2—Sm1—O1175.72 (17)H19A—C19—H19B107.9
O1—Sm1—O1169.51 (19)C5—C6—C1119.7 (8)
O5—Sm1—O11161.9 (2)C5—C6—C7119.3 (7)
O9—Sm1—O1167.87 (19)C1—C6—C7121.0 (7)
O12—Sm1—O1150.1 (2)C15—O4—C17118.3 (6)
O2—Sm1—O8133.3 (2)C15—O4—Sm1119.2 (4)
O1—Sm1—O8163.45 (19)C17—O4—Sm1121.9 (4)
O5—Sm1—O864.8 (2)O4—C15—C14126.9 (8)
O9—Sm1—O849.90 (19)O4—C15—C16114.0 (7)
O12—Sm1—O873.3 (2)C14—C15—C16118.9 (8)
O11—Sm1—O8105.78 (19)C5—C4—C3119.4 (7)
O2—Sm1—O680.85 (17)C5—C4—H4120.3
O1—Sm1—O671.76 (18)C3—C4—H4120.3
O5—Sm1—O649.78 (18)O7—N3—O5122.4 (7)
O9—Sm1—O6137.87 (18)O7—N3—O6121.2 (8)
O12—Sm1—O6147.46 (18)O5—N3—O6116.3 (7)
O11—Sm1—O6140.73 (19)N2—C10—C11122.9 (8)
O8—Sm1—O6113.23 (19)N2—C10—H10118.6
O2—Sm1—O461.93 (16)C11—C10—H10118.6
O1—Sm1—O4119.50 (17)C19—C20—H20A109.5
O5—Sm1—O478.42 (18)C19—C20—H20B109.5
O9—Sm1—O4121.96 (18)H20A—C20—H20B109.5
O12—Sm1—O471.87 (17)C19—C20—H20C109.5
O11—Sm1—O4115.66 (19)H20A—C20—H20C109.5
O8—Sm1—O477.00 (19)H20B—C20—H20C109.5
O6—Sm1—O478.55 (17)C4—C5—C6121.6 (8)
O2—Sm1—O3122.88 (16)C4—C5—H5119.2
O1—Sm1—O360.80 (16)C6—C5—H5119.2
O5—Sm1—O380.69 (18)C12—C13—C14120.9 (8)
O9—Sm1—O370.72 (17)C12—C13—H13119.5
O12—Sm1—O3131.34 (17)C14—C13—H13119.5
O11—Sm1—O387.11 (19)N5—O11—Sm196.2 (5)
O8—Sm1—O3103.73 (19)N4—O9—Sm197.4 (5)
O6—Sm1—O379.66 (17)O13—N5—O12120.9 (10)
O4—Sm1—O3156.43 (16)O13—N5—O11122.8 (9)
N1—Ni1—N286.9 (3)O12—N5—O11116.2 (8)
N1—Ni1—O195.3 (3)N5—O12—Sm197.5 (5)
N2—Ni1—O1174.1 (3)N4—O8—Sm196.0 (5)
N1—Ni1—O2175.6 (3)O10—N4—O8121.8 (9)
N2—Ni1—O293.7 (3)O10—N4—O9121.5 (9)
O1—Ni1—O284.6 (2)O8—N4—O9116.6 (8)
C16—O2—Ni1124.6 (5)O4—C17—C18112.5 (6)
C16—O2—Sm1127.0 (5)O4—C17—H17A109.1
Ni1—O2—Sm1107.4 (2)C18—C17—H17A109.1
C1—O1—Ni1127.6 (6)O4—C17—H17B109.1
C1—O1—Sm1127.0 (5)C18—C17—H17B109.1
Ni1—O1—Sm1105.4 (2)H17A—C17—H17B107.8
O2—C16—C11125.3 (7)C2—C3—C4119.3 (7)
O2—C16—C15116.8 (7)C2—C3—H3120.3
C11—C16—C15117.9 (7)C4—C3—H3120.3
C10—N2—C9120.3 (7)N1—C8—C9105.1 (7)
C10—N2—Ni1128.8 (6)N1—C8—H8A110.7
C9—N2—Ni1110.8 (5)C9—C8—H8A110.7
N3—O5—Sm198.2 (4)N1—C8—H8B110.7
O1—C1—C2118.9 (8)C9—C8—H8B110.7
O1—C1—C6123.5 (8)H8A—C8—H8B108.8
C2—C1—C6117.6 (7)N2—C9—C8106.2 (6)
N3—O6—Sm194.7 (4)N2—C9—H9A110.5
C2—O3—C19118.3 (6)C8—C9—H9A110.5
C2—O3—Sm1119.9 (4)N2—C9—H9B110.5
C19—O3—Sm1121.7 (4)C8—C9—H9B110.5
C7—N1—C8120.5 (7)H9A—C9—H9B108.7
C7—N1—Ni1124.6 (6)C13—C14—C15121.1 (8)
C8—N1—Ni1114.5 (6)C13—C14—H14119.4
C16—C11—C12120.9 (8)C15—C14—H14119.4
C16—C11—C10120.9 (7)C17—C18—H18A109.5
C12—C11—C10118.1 (8)C17—C18—H18B109.5
C3—C2—C1122.1 (7)H18A—C18—H18B109.5
C3—C2—O3124.5 (7)C17—C18—H18C109.5
C1—C2—O3113.2 (6)H18A—C18—H18C109.5
C13—C12—C11120.0 (8)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O90.962.493.150 (10)126
C20—H20C···O7i0.962.553.308 (12)136
C17—H17A···O8ii0.972.593.536 (9)164
C9—H9A···O13iii0.972.433.283 (11)147
C7—H7···O13iv0.932.393.320 (10)173
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[NiSm(C20H22N2O4)(NO3)3]
Mr749.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6097 (14), 13.750 (2), 21.113 (3)
V3)2499.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.26 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.494, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
18707, 6073, 2970
Rint0.089
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.084, 1.00
No. of reflections6073
No. of parameters362
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 1.58
Absolute structureFlack (1983), 2588 Freidel pairs
Absolute structure parameter0.007 (19)

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), APEX2 and publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Sm1—O12.455 (5)Sm1—O92.507 (6)
Sm1—O22.401 (5)Sm1—O112.560 (5)
Sm1—O32.621 (5)Sm1—O122.548 (6)
Sm1—O42.581 (5)Ni1—O11.861 (5)
Sm1—O52.503 (4)Ni1—O21.863 (5)
Sm1—O62.573 (5)Ni1—N11.837 (7)
Sm1—O82.561 (5)Ni1—N21.840 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O90.962.493.150 (10)125.8
C20—H20C···O7i0.962.553.308 (12)135.8
C17—H17A···O8ii0.972.593.536 (9)164.0
C9—H9A···O13iii0.972.433.283 (11)146.7
C7—H7···O13iv0.932.393.320 (10)173.1
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds