Download citation
Download citation
link to html
In the title compound, [Fe(C5H5)(C12H7Cl2O)], the cyclo­penta­dienyl rings are almost parallel and eclipsed as typically found for similar monosubstituted ferrocene derivatives. Weak C—H...O and C—H...Cl hydrogen bonds link mol­ecules into two-dimensional layers parallel to the ac plane in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053391/bh2140sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053391/bh2140Isup2.hkl
Contains datablock I

CCDC reference: 672696

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.042
  • wR factor = 0.101
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.133 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.13 PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.79
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Ferrocene complexes are widely used in homogenous catalysis, organic or organometallic synthesis and in material science. The use of ferrocene and its derivatives as catalyst in drying process of oxidizable paints was investigated recently (Šťáva et al., 2007) and it was observed that ferrocenes bearing electron-withdrawing substituents show the highest activity. As a part of our investigation of ferrocene derivatives, we have prepared the title compound, (I), and determined its structure in the solid state.

As Figure 1 shows, the title compound displays a structure typical for monosubstituted acylferrocenes. The cyclopentadienyl (Cp) rings are almost parallel, making a dihedral angle of 2.0 (2)°, and are eclipsed as viewed down the normal of Cp rings. The dihedral angle between a ring C atom, the two ring centroids and the C atom of opposite ring varies from 3.1 (2)° to 3.9 (3)°. The interatomic distances and angles in (I) are very close to those found in benzoylferrocene (Butler et al., 1988), see Table 1.

The angle between the plane defined by ring of 3,4-dichlorobenzoyl group and Cp ring bonded to this group is found to be 39.5 (2)°, validating that Cp and benzene ring π-systems are not conjugated. Carbonyl atom C11 is displaced slightly out of the Cp ring away from the Fe atom, with an angle of 1.3 (2)° between the ring plane and C1—C11 bond.

Geometric parameters of weak intermolecular interactions observed in the crystal of (I) are listed in the Table 2. Atom O1 of the molecule at (-1 + x, 1 - y, z) serves as an acceptor for atom C17 of the molecule in the asymmetric unit, generating molecular wires along the [100] axis. Atom C9 of the asymmetric unit serves as a donor to atom Cl2 of the molecule at (-1 + x, y, 1 + z), linking the above mentioned molecular wires into two-dimensional layers parallel to the ac plane.

Related literature top

The title complex has been synthesized following a procedure described by Reeves (1977). For related literature dealing with the crystal structures of related ferrocenyl complexes formulated as FeCp(C5H4COAr), where Cp = η5-C5H5 and Ar = C6H5, 4-C6H4CH3, 4-C6H4NH2 and 4-C6H4OH, see: Butler et al. (1988); Figueroa et al. (2005); Bényei et al. (1997). For the use of derivatives similar to the title complex as catalyst in drying process of oxidizable paints, see: Šťáva et al. (2007).

Experimental top

The title compound was synthesized from ferrocene and 3,4-dichlorobenzoyl chloride in the presence of AlCl3 following the procedure described by Reeves (1977). Melting point, IR and NMR spectra confirmed identity and purity of prepared compound. Crystals suitable for X-ray diffraction analysis were grown by sublimation in a sealed ampoule at 0.1 Pa and 380 K.

Refinement top

All H atoms were positioned geometrically and refined as riding on their parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with displacement ellipsoids drawn at the 50% probability level.
1-(3,4-Dichlorobenzoyl)ferrocene top
Crystal data top
[Fe(C5H5)(C12H7Cl2O)]Z = 2
Mr = 359.02F(000) = 364
Triclinic, P1Dx = 1.719 Mg m3
Hall symbol: -P 1Melting point: 426 K
a = 6.1970 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0720 (5) ÅCell parameters from 11119 reflections
c = 11.8160 (7) Åθ = 1–27.5°
α = 78.098 (4)°µ = 1.47 mm1
β = 76.452 (4)°T = 150 K
γ = 78.903 (3)°Plate, red
V = 693.47 (6) Å30.40 × 0.30 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed tube2773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.133
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scans to fill the Ewald sphereh = 78
Absorption correction: integration
Gaussian integration (Coppens et al., 1970)
k = 1312
Tmin = 0.551, Tmax = 0.916l = 1515
11098 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0055P)2 + 0.7487P]
where P = (Fo2 + 2Fc2)/3
3169 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Fe(C5H5)(C12H7Cl2O)]γ = 78.903 (3)°
Mr = 359.02V = 693.47 (6) Å3
Triclinic, P1Z = 2
a = 6.1970 (3) ÅMo Kα radiation
b = 10.0720 (5) ŵ = 1.47 mm1
c = 11.8160 (7) ÅT = 150 K
α = 78.098 (4)°0.40 × 0.30 × 0.06 mm
β = 76.452 (4)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3169 independent reflections
Absorption correction: integration
Gaussian integration (Coppens et al., 1970)
2773 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.916Rint = 0.133
11098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.15Δρmax = 0.72 e Å3
3169 reflectionsΔρmin = 0.74 e Å3
190 parameters
Special details top

Experimental. Melting point: 426–427 K. Spectroscopic analysis: 1H NMR (benzene-d6, δ, p.p.m.): 3.84 (s, 5H), 4.09 (m, 2H), 4.66 (m, 2H), 6.95 (m, 1H), 7.44 (m, 1H), 8.04 (d, 1H). 13C NMR (benzene-d6, δ, p.p.m.): 67.0, 71.1, 72.3, 77.8, 129.5, 130.2, 132.3, 135.4, 139.3, 184.5. Uv-Vis (cyclohexane, maxima at nm): 473, 369, 284 (sh). IR (KBr disc, cm-1): 3108 (m), 1625 (s), 1581 (m), 1555 (m), 1533 (w), 1455 (m), 1445 (s), 1385 (s), 1289 (s), 1246 (m), 1172 (m), 1131 (w), 1106 (m), 1054 (m), 1028 (m), 1002 (w), 969 (m), 907 (m), 877 (w), 848 (w), 829 (s), 767 (m), 752 (m), 678 (m), 667 (w), 579 (w), 538 (m), 501 (m), 486 (m), 442 (w).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.83358 (6)0.22818 (4)0.27185 (4)0.01123 (12)
Cl20.33933 (12)0.18553 (8)0.93854 (7)0.02494 (19)
Cl10.76392 (12)0.31674 (8)0.92710 (7)0.02464 (19)
O11.1551 (3)0.3333 (3)0.4841 (2)0.0256 (5)
C40.9628 (5)0.3893 (3)0.1563 (3)0.0178 (6)
H41.03320.38910.07760.021*
C130.8399 (4)0.3279 (3)0.6918 (3)0.0138 (6)
H130.96900.36380.68880.017*
C10.9018 (4)0.3649 (3)0.3600 (3)0.0133 (6)
C150.5085 (4)0.2371 (3)0.8039 (3)0.0138 (6)
C160.4526 (4)0.2223 (3)0.7020 (3)0.0149 (6)
H160.32230.18730.70560.018*
C70.6071 (5)0.0945 (3)0.3417 (3)0.0181 (6)
H70.46510.11430.38790.022*
C110.9590 (4)0.3365 (3)0.4761 (3)0.0149 (6)
C140.6996 (4)0.2925 (3)0.7995 (3)0.0140 (6)
C120.7887 (4)0.3099 (3)0.5885 (3)0.0129 (6)
C170.5904 (4)0.2596 (3)0.5934 (3)0.0139 (6)
H170.55130.25120.52410.017*
C51.0691 (5)0.3524 (3)0.2539 (3)0.0173 (6)
H51.22220.32450.25020.021*
C100.9866 (5)0.0274 (3)0.2838 (3)0.0198 (7)
H101.13710.00440.28580.024*
C20.6896 (4)0.4111 (3)0.3241 (3)0.0153 (6)
H20.55070.42780.37400.018*
C90.8939 (5)0.0678 (3)0.1809 (3)0.0191 (6)
H90.97310.06720.10370.023*
C80.6603 (5)0.1094 (3)0.2159 (3)0.0181 (6)
H80.55910.14100.16570.022*
C30.7291 (5)0.4269 (3)0.1992 (3)0.0186 (6)
H30.62060.45680.15310.022*
C60.8093 (5)0.0440 (3)0.3838 (3)0.0198 (7)
H60.82350.02520.46240.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0107 (2)0.00976 (18)0.0112 (2)0.00165 (14)0.00060 (14)0.00050 (15)
Cl20.0214 (4)0.0346 (4)0.0160 (4)0.0112 (3)0.0055 (3)0.0020 (3)
Cl10.0274 (4)0.0353 (4)0.0144 (4)0.0120 (3)0.0057 (3)0.0030 (3)
O10.0101 (9)0.0460 (14)0.0210 (14)0.0065 (9)0.0018 (8)0.0056 (11)
C40.0257 (14)0.0134 (12)0.0114 (16)0.0076 (11)0.0017 (11)0.0025 (11)
C130.0099 (11)0.0157 (12)0.0152 (16)0.0029 (10)0.0030 (10)0.0001 (11)
C10.0139 (12)0.0111 (12)0.0138 (16)0.0039 (10)0.0005 (10)0.0015 (11)
C150.0117 (12)0.0131 (12)0.0140 (16)0.0013 (10)0.0015 (10)0.0017 (11)
C160.0104 (12)0.0154 (12)0.0182 (17)0.0022 (10)0.0019 (10)0.0023 (11)
C70.0173 (13)0.0173 (13)0.0197 (17)0.0099 (11)0.0000 (11)0.0009 (12)
C110.0120 (12)0.0155 (12)0.0171 (16)0.0025 (10)0.0027 (11)0.0023 (11)
C140.0153 (12)0.0147 (12)0.0125 (16)0.0006 (10)0.0057 (10)0.0020 (11)
C120.0103 (12)0.0122 (12)0.0137 (16)0.0001 (10)0.0009 (10)0.0002 (10)
C170.0099 (11)0.0163 (12)0.0155 (16)0.0012 (10)0.0028 (10)0.0034 (11)
C50.0158 (13)0.0180 (13)0.0163 (16)0.0069 (11)0.0039 (11)0.0029 (11)
C100.0189 (13)0.0099 (12)0.027 (2)0.0023 (10)0.0034 (12)0.0010 (12)
C20.0149 (12)0.0089 (11)0.0212 (17)0.0003 (10)0.0038 (11)0.0020 (11)
C90.0263 (15)0.0162 (13)0.0133 (16)0.0060 (12)0.0045 (12)0.0065 (11)
C80.0225 (14)0.0163 (13)0.0173 (17)0.0063 (11)0.0053 (11)0.0020 (12)
C30.0228 (14)0.0115 (12)0.0203 (18)0.0002 (11)0.0054 (12)0.0009 (11)
C60.0271 (15)0.0122 (12)0.0182 (17)0.0069 (11)0.0023 (12)0.0025 (12)
Geometric parameters (Å, º) top
Fe1—C22.037 (3)C15—C161.372 (4)
Fe1—C82.043 (3)C15—C141.390 (4)
Fe1—C12.045 (3)C16—C171.389 (4)
Fe1—C52.046 (3)C16—H160.9300
Fe1—C72.047 (2)C7—C61.421 (4)
Fe1—C92.049 (3)C7—C81.428 (5)
Fe1—C42.053 (2)C7—H70.9300
Fe1—C62.053 (3)C11—C121.502 (4)
Fe1—C102.053 (3)C12—C171.402 (3)
Fe1—C32.053 (3)C17—H170.9300
Cl2—C151.728 (3)C5—H50.9300
Cl1—C141.720 (3)C10—C91.417 (5)
O1—C111.235 (3)C10—C61.426 (4)
C4—C51.409 (4)C10—H100.9300
C4—C31.422 (4)C2—C31.419 (5)
C4—H40.9300C2—H20.9300
C13—C121.384 (4)C9—C81.414 (4)
C13—C141.385 (4)C9—H90.9300
C13—H130.9300C8—H80.9300
C1—C51.439 (4)C3—H30.9300
C1—C21.439 (4)C6—H60.9300
C1—C111.454 (4)
C2—Fe1—C8122.72 (11)C15—C16—C17120.0 (2)
C2—Fe1—C141.27 (11)C15—C16—H16120.0
C8—Fe1—C1160.73 (11)C17—C16—H16120.0
C2—Fe1—C568.79 (11)C6—C7—C8108.0 (3)
C8—Fe1—C5155.61 (13)C6—C7—Fe169.95 (14)
C1—Fe1—C541.17 (11)C8—C7—Fe169.44 (14)
C2—Fe1—C7107.01 (11)C6—C7—H7126.0
C8—Fe1—C740.86 (12)C8—C7—H7126.0
C1—Fe1—C7124.75 (12)Fe1—C7—H7126.2
C5—Fe1—C7162.75 (13)O1—C11—C1119.5 (3)
C2—Fe1—C9159.04 (13)O1—C11—C12117.7 (3)
C8—Fe1—C940.44 (12)C1—C11—C12122.8 (2)
C1—Fe1—C9158.00 (12)C13—C14—C15119.7 (3)
C5—Fe1—C9121.68 (12)C13—C14—Cl1119.8 (2)
C7—Fe1—C968.28 (12)C15—C14—Cl1120.5 (2)
C2—Fe1—C468.58 (12)C13—C12—C17119.6 (3)
C8—Fe1—C4119.76 (13)C13—C12—C11117.6 (2)
C1—Fe1—C468.83 (12)C17—C12—C11122.7 (3)
C5—Fe1—C440.22 (12)C16—C17—C12119.8 (3)
C7—Fe1—C4155.46 (13)C16—C17—H17120.1
C9—Fe1—C4106.74 (12)C12—C17—H17120.1
C2—Fe1—C6122.28 (13)C4—C5—C1108.8 (2)
C8—Fe1—C668.47 (12)C4—C5—Fe170.13 (15)
C1—Fe1—C6108.89 (12)C1—C5—Fe169.37 (14)
C5—Fe1—C6126.45 (12)C4—C5—H5125.6
C7—Fe1—C640.56 (12)C1—C5—H5125.6
C9—Fe1—C668.30 (13)Fe1—C5—H5126.5
C4—Fe1—C6162.02 (12)C9—C10—C6108.2 (3)
C2—Fe1—C10158.73 (14)C9—C10—Fe169.63 (16)
C8—Fe1—C1068.11 (12)C6—C10—Fe169.67 (16)
C1—Fe1—C10123.20 (12)C9—C10—H10125.9
C5—Fe1—C10109.30 (12)C6—C10—H10125.9
C7—Fe1—C1068.18 (11)Fe1—C10—H10126.4
C9—Fe1—C1040.41 (13)C3—C2—C1108.1 (2)
C4—Fe1—C10124.55 (12)C3—C2—Fe170.31 (17)
C6—Fe1—C1040.65 (12)C1—C2—Fe169.65 (16)
C2—Fe1—C340.58 (13)C3—C2—H2125.9
C8—Fe1—C3105.76 (12)C1—C2—H2125.9
C1—Fe1—C368.74 (12)Fe1—C2—H2125.7
C5—Fe1—C367.95 (12)C8—C9—C10108.2 (3)
C7—Fe1—C3120.48 (11)C8—C9—Fe169.58 (17)
C9—Fe1—C3122.75 (14)C10—C9—Fe169.96 (18)
C4—Fe1—C340.52 (11)C8—C9—H9125.9
C6—Fe1—C3156.78 (12)C10—C9—H9125.9
C10—Fe1—C3159.99 (14)Fe1—C9—H9126.2
C5—C4—C3108.0 (3)C9—C8—C7108.0 (3)
C5—C4—Fe169.65 (15)C9—C8—Fe169.98 (16)
C3—C4—Fe169.76 (14)C7—C8—Fe169.70 (16)
C5—C4—H4126.0C9—C8—H8126.0
C3—C4—H4126.0C7—C8—H8126.0
Fe1—C4—H4126.2Fe1—C8—H8125.9
C12—C13—C14120.2 (2)C2—C3—C4108.4 (3)
C12—C13—H13119.9C2—C3—Fe169.11 (16)
C14—C13—H13119.9C4—C3—Fe169.72 (15)
C5—C1—C2106.6 (3)C2—C3—H3125.8
C5—C1—C11122.2 (2)C4—C3—H3125.8
C2—C1—C11131.2 (3)Fe1—C3—H3127.0
C5—C1—Fe169.46 (17)C7—C6—C10107.6 (3)
C2—C1—Fe169.07 (16)C7—C6—Fe169.49 (15)
C11—C1—Fe1127.36 (18)C10—C6—Fe169.68 (15)
C16—C15—C14120.6 (3)C7—C6—H6126.2
C16—C15—Cl2119.39 (19)C10—C6—H6126.2
C14—C15—Cl2120.0 (2)Fe1—C6—H6126.2

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C12H7Cl2O)]
Mr359.02
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.1970 (3), 10.0720 (5), 11.8160 (7)
α, β, γ (°)78.098 (4), 76.452 (4), 78.903 (3)
V3)693.47 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.40 × 0.30 × 0.06
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
Gaussian integration (Coppens et al., 1970)
Tmin, Tmax0.551, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
11098, 3169, 2773
Rint0.133
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.15
No. of reflections3169
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.74

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, °) top
Fe1···Cg11.6505 (10)
Fe1···Cg21.6479 (10)
Cg1···Fe1···Cg2177.94 (8)
Cg1 and Cg2 are the centroids defined by atoms C1–C5 and C6–C10, respectively.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.563.156 (4)123
C9—H9···Cl2ii0.932.903.658 (3)140
Symmetry codes: (i) x - 1, -y + 1, z; (ii) x - 1, y, z + 1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds