Download citation
Download citation
link to html
The title compound, {(C5H14N2)[Cu2Cl4]}n, was synthesized by the hydro­thermal reaction of CuCl2 with homochiral (R)-2-methyl­piperazine. One Cu atom has a slightly distorted tetra­hedral geometry defined by one terminal and three bridging Cl anions, while the other displays a trigonal planar geometry composed of one terminal and two bridging Cl anions. The crystal structure contains a polymeric anion forming a chain running along the a axis and (R)-2-methyl­piperazinediium cations filling the space between these chains. Cations and anions are connected by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052774/bt2555sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052774/bt2555Isup2.hkl
Contains datablock I

CCDC reference: 672578

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.040
  • wR factor = 0.091
  • Data-to-parameter ratio = 23.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.80 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT480_ALERT_4_C Long H...A H-Bond Reported H1A .. CL2 .. 2.90 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.21 Ratio
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.804 Tmax scaled 0.804 Tmin scaled 0.580 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2756 Count of symmetry unique reflns 1618 Completeness (_total/calc) 170.33% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1138 Fraction of Friedel pairs measured 0.703 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.00 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (1) 1.03
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Macro-physical properties, such as ferroelectricity and second harmonic generation, are only found in noncentrosymmetric bulk material (Newnham, 1975). We have focused on the synthesis and design of noncentrosymmetric coordination compounds constructed by chiral organic ligand as building block with inorganic metal ions through hydrothermal synthesis (Qu et al., 2004). We report here the crystal structure of the title compound, cantena Poly [(R)-2-methylpiperazine-dium (µ2-chloro)-(µ3-chloro)-dichloro-di-copper(I)].

In I, there are two chemically and crystallographically independent Cu atoms with a distance of Cu1—Cu2 2.8893 (12) Å. As shown in Fig.1, Cu1 has a slightly distorted tetrahedral geometry defined by one terminal and three bridging Cl anions; Cu2 displays a trigonal geometry composed of one terminal and two bridging Cl anions. The distance from Cu2 to the plane of Cl1 Cl2 Cl3B is of 0.0426 (10) Å. The six atoms Cu1 Cl1 Cu2 Cl3B Cu1B Cl3 form a six-membered ring. Besides the terminal Cl atoms, the adjacent six-membered rings share edges to form the Cl-bridged Cu chain. The diprotonated piperidine molecules and the chains are connected by hydrogen bonds.

Related literature top

For macrophysical properties of noncentrosymmetric bulk materials, see: Newnham (1975); Qu et al. (2004).

Experimental top

A mixture of (R)-2-methylpiperazine (20 mg, 0.2 mmol), CuCl2 (27 mg, 0.2 mmol), water (1 ml) and methanol (1 ml) sealed in a glass tube were maintained at 110–115 °C. Crystals suitable for X-ray analysis were obtained after 5 days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compoud with atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Atoms with suffix A and B are generated by the symmetry operator 1/2 + x, -1/2 - y, -1 - z and -1/2 + x, -1/2 - y, -1 - z, respectively. The dashed open lines show the Cu—Cu interaction.
[Figure 2] Fig. 2. The chain structure of the title compound. Methyl C atoms and H atoms bonded to C atoms were omitted for clarity. The dashed lines show the N—H···Cl hydrogen bonds presented in Table 2.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the a axis. H atoms bonded to C atoms were omitted for clarity. The dashed lines show hydrogen bonds.
Poly[(R)-2-methylpiperazinediium [µ3-chlorido-µ2-chlorido-dichloridodicopper(I)]] top
Crystal data top
(C5H14N2)[Cu2Cl4]F(000) = 736
Mr = 371.06Dx = 2.038 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3251 reflections
a = 6.1943 (16) Åθ = 3.1–27.5°
b = 12.544 (4) ŵ = 4.36 mm1
c = 15.561 (5) ÅT = 293 K
V = 1209.1 (6) Å3Block, colourless
Z = 40.25 × 0.06 × 0.05 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.721, Tmax = 1.000l = 2020
12245 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2756 reflectionsΔρmax = 0.75 e Å3
119 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1149 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
(C5H14N2)[Cu2Cl4]V = 1209.1 (6) Å3
Mr = 371.06Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1943 (16) ŵ = 4.36 mm1
b = 12.544 (4) ÅT = 293 K
c = 15.561 (5) Å0.25 × 0.06 × 0.05 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2439 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 1.000Rint = 0.058
12245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.75 e Å3
S = 1.06Δρmin = 0.53 e Å3
2756 reflectionsAbsolute structure: Flack (1983), with 1149 Friedel pairs
119 parametersAbsolute structure parameter: 0.04 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34591 (11)0.14923 (6)0.54943 (4)0.0524 (2)
Cu20.07136 (10)0.04816 (6)0.53360 (4)0.04967 (19)
Cl10.2405 (2)0.00613 (11)0.47681 (8)0.0450 (3)
Cl20.18532 (19)0.05572 (11)0.64711 (9)0.0495 (3)
Cl30.20460 (19)0.32180 (10)0.50581 (8)0.0427 (3)
Cl40.30984 (18)0.14203 (9)0.69686 (7)0.0361 (2)
N10.1874 (6)0.1985 (3)0.7303 (2)0.0357 (8)
H1A0.08280.15660.70870.043*
H1B0.31550.17120.71420.043*
N20.3208 (6)0.3814 (3)0.8259 (2)0.0377 (9)
H2A0.19320.40970.84150.045*
H2B0.42620.42320.84700.045*
C10.2082 (11)0.0895 (5)0.8625 (4)0.0707 (18)
H8A0.20540.09270.92420.106*
H8B0.09610.04270.84270.106*
H8C0.34580.06300.84390.106*
C20.1730 (8)0.1982 (4)0.8266 (3)0.0387 (11)
H4A0.02940.22330.84370.046*
C30.3411 (8)0.2726 (4)0.8632 (3)0.0430 (11)
H5A0.48390.24470.85110.052*
H5B0.32430.27660.92510.052*
C40.3356 (8)0.3795 (4)0.7302 (3)0.0383 (10)
H6A0.31690.45110.70770.046*
H6B0.47690.35410.71290.046*
C50.1646 (8)0.3078 (4)0.6943 (3)0.0384 (10)
H3A0.17720.30510.63220.046*
H3B0.02310.33590.70840.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0531 (4)0.0554 (4)0.0486 (4)0.0069 (3)0.0020 (3)0.0041 (3)
Cu20.0480 (4)0.0455 (4)0.0555 (4)0.0046 (3)0.0058 (3)0.0045 (3)
Cl10.0429 (6)0.0455 (6)0.0467 (7)0.0023 (5)0.0051 (5)0.0029 (5)
Cl20.0329 (6)0.0514 (7)0.0642 (8)0.0014 (6)0.0048 (6)0.0195 (7)
Cl30.0311 (5)0.0369 (6)0.0600 (7)0.0024 (5)0.0010 (5)0.0114 (5)
Cl40.0311 (5)0.0378 (5)0.0395 (6)0.0010 (5)0.0001 (4)0.0033 (5)
N10.0295 (19)0.0309 (18)0.047 (2)0.0047 (17)0.0019 (18)0.0051 (17)
N20.034 (2)0.040 (2)0.039 (2)0.0001 (18)0.0053 (18)0.0113 (17)
C10.076 (4)0.058 (4)0.078 (4)0.008 (3)0.013 (4)0.016 (3)
C20.033 (2)0.041 (3)0.042 (3)0.003 (2)0.007 (2)0.003 (2)
C30.037 (3)0.057 (3)0.035 (2)0.003 (2)0.002 (2)0.002 (2)
C40.042 (3)0.033 (2)0.040 (2)0.000 (2)0.002 (2)0.003 (2)
C50.046 (3)0.036 (2)0.034 (2)0.002 (2)0.005 (2)0.0025 (19)
Geometric parameters (Å, º) top
Cu1—Cl42.3068 (15)N2—H2A0.9000
Cu1—Cl12.3453 (16)N2—H2B0.9000
Cu1—Cl3i2.4099 (14)C1—C21.490 (7)
Cu1—Cl32.4317 (15)C1—H8A0.9600
Cu1—Cu22.8893 (12)C1—H8B0.9600
Cu2—Cl3ii2.2278 (14)C1—H8C0.9600
Cu2—Cl12.2308 (15)C2—C31.510 (7)
Cu2—Cl22.3057 (15)C2—H4A0.9800
Cl3—Cu2i2.2277 (14)C3—H5A0.9700
Cl3—Cu1ii2.4099 (14)C3—H5B0.9700
N1—C51.488 (6)C4—C51.498 (6)
N1—C21.501 (6)C4—H6A0.9700
N1—H1A0.9000C4—H6B0.9700
N1—H1B0.9000C5—H3A0.9700
N2—C31.488 (6)C5—H3B0.9700
N2—C41.492 (6)
Cl4—Cu1—Cl1114.81 (5)H2A—N2—H2B107.9
Cl4—Cu1—Cl3i116.74 (5)C2—C1—H8A109.5
Cl1—Cu1—Cl3i102.13 (5)C2—C1—H8B109.5
Cl4—Cu1—Cl3106.12 (5)H8A—C1—H8B109.5
Cl1—Cu1—Cl3120.33 (5)C2—C1—H8C109.5
Cl3i—Cu1—Cl395.63 (4)H8A—C1—H8C109.5
Cl4—Cu1—Cu288.91 (4)H8B—C1—H8C109.5
Cl1—Cu1—Cu249.11 (4)C1—C2—N1111.6 (4)
Cl3i—Cu1—Cu2149.37 (5)C1—C2—C3108.9 (4)
Cl3—Cu1—Cu292.57 (4)N1—C2—C3109.5 (4)
Cl3ii—Cu2—Cl1130.84 (6)C1—C2—H4A108.9
Cl3ii—Cu2—Cl2115.72 (6)N1—C2—H4A108.9
Cl1—Cu2—Cl2113.33 (6)C3—C2—H4A108.9
Cl3ii—Cu2—Cu1105.04 (5)N2—C3—C2111.2 (4)
Cl1—Cu2—Cu152.63 (4)N2—C3—H5A109.4
Cl2—Cu2—Cu1117.17 (4)C2—C3—H5A109.4
Cu2—Cl1—Cu178.26 (5)N2—C3—H5B109.4
Cu2i—Cl3—Cu1ii111.45 (5)C2—C3—H5B109.4
Cu2i—Cl3—Cu1120.29 (6)H5A—C3—H5B108.0
Cu1ii—Cl3—Cu1124.45 (5)N2—C4—C5109.8 (4)
C5—N1—C2111.9 (4)N2—C4—H6A109.7
C5—N1—H1A109.2C5—C4—H6A109.7
C2—N1—H1A109.2N2—C4—H6B109.7
C5—N1—H1B109.2C5—C4—H6B109.7
C2—N1—H1B109.2H6A—C4—H6B108.2
H1A—N1—H1B107.9N1—C5—C4110.2 (4)
C3—N2—C4111.7 (3)N1—C5—H3A109.6
C3—N2—H2A109.3C4—C5—H3A109.6
C4—N2—H2A109.3N1—C5—H3B109.6
C3—N2—H2B109.3C4—C5—H3B109.6
C4—N2—H2B109.3H3A—C5—H3B108.1
Symmetry codes: (i) x+1/2, y1/2, z1; (ii) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.902.453.203 (4)142
N1—H1A···Cl20.902.903.442 (4)120
N1—H1B···Cl4iii0.902.363.236 (4)163
N2—H2A···Cl2iv0.902.393.260 (4)162
N2—H2B···Cl2v0.902.423.187 (4)143
Symmetry codes: (iii) x1, y, z; (iv) x, y1/2, z3/2; (v) x1, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[Cu2Cl4]
Mr371.06
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.1943 (16), 12.544 (4), 15.561 (5)
V3)1209.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.36
Crystal size (mm)0.25 × 0.06 × 0.05
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.721, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12245, 2756, 2439
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.06
No. of reflections2756
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.53
Absolute structureFlack (1983), with 1149 Friedel pairs
Absolute structure parameter0.04 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Selected bond lengths (Å) top
Cu1—Cl42.3068 (15)Cu2—Cl3ii2.2278 (14)
Cu1—Cl12.3453 (16)Cu2—Cl12.2308 (15)
Cu1—Cl3i2.4099 (14)Cu2—Cl22.3057 (15)
Cu1—Cl32.4317 (15)Cl3—Cu2i2.2277 (14)
Cu1—Cu22.8893 (12)Cl3—Cu1ii2.4099 (14)
Symmetry codes: (i) x+1/2, y1/2, z1; (ii) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.902.453.203 (4)141.9
N1—H1A···Cl20.902.903.442 (4)120.2
N1—H1B···Cl4iii0.902.363.236 (4)163.0
N2—H2A···Cl2iv0.902.393.260 (4)162.3
N2—H2B···Cl2v0.902.423.187 (4)142.9
Symmetry codes: (iii) x1, y, z; (iv) x, y1/2, z3/2; (v) x1, y1/2, z3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds