Download citation
Download citation
link to html
The title compound, C11H15BrO6, is enanti­omerically pure and the chirality at C-1 and C-2 was determined to be R in each case. The chirality at the stereogenic centres was installed via a Sharpless asymmetric dihydroxy­lation reaction. The crystal structure contains O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705310X/bt2560sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705310X/bt2560Isup2.hkl
Contains datablock I

CCDC reference: 672786

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.022
  • wR factor = 0.058
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 11 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.53 Ratio PLAT431_ALERT_2_C Short Inter HL..A Contact Br7 .. O14 .. 3.25 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.52 From the CIF: _reflns_number_total 2916 Count of symmetry unique reflns 1702 Completeness (_total/calc) 171.33% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1214 Fraction of Friedel pairs measured 0.713 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 44
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the stereoselective total synthesis of the natural product (–)-aiphanol, the absolute stereochemistry on the 1,4-dioxane ring system was unequivocally determined (Banwell et al., 2005). To achieve this the absolute stereochemistry at the stereogenic centres of the key intermediate used in the synthesis, compound (II), was determined through single-crystal X-ray analysis of its brominated derivative (I).

Compound (I) was obtained through bromination of compound (II) with pyridinium hydrobromide perbromide followed by removal of the methoxymethyl (MOM) group under acidic conditions. The so-formed white solid was recrystallized from methanol-DCM to afford pure colourless crystals.

Compound (I) is enantiomerically pure and the absolute structure of the crystal has been determined by refinement of the Flack parameter. The outcome clearly indicates the absolute configuration at C-1 and C-2 as R in each case.

All H atoms were observed in a difference electron-density map. They were then repositioned geometrically and their coordinates refined with restraints being applied to distances and bond angles. Intermolecular hydrogen-bonding interactions are observed between the O—H groups O9—H9 and O13—H13 with O11 and O9, respectively, of an adjacent molecule. Intermolecular hydrogen bonding interactions are also observed for O11—H11 with O14 and O16, and for O16—H16 with O13 and O17 of adjacent molecules.

Related literature top

For related literature, see: Banwell et al. (2005); Sharpless et al. (1988).

Experimental top

Compound (II) was prepared via a Sharpless asymmetric dihydroxylation reaction (Sharpless et al., 1988) and was obtained in >95% e.e. as determined by chiral HPLC analysis (for experimental details see Banwell et al., 2005). A magnetically stirred solution of compound (II) (25 mg, 0.09 mmol) in DCM (5 ml) maintained at 291 K was treated, in one portion, with pyridinium hydrobromide perbromide (32 mg, 0.1 mmol) and the ensuing mixture stirred for a further 10 minutes at which time TLC analysis indicated no starting material remained. Consequently, the reaction was quenched with sodium bisulfate (0.5 ml of a 1 M aqueous solution) then NaHCO3 (2 ml of a saturated solution) was added. The DCM layer was separated, and the aqueous layer extracted with DCM (2 x 5 ml). The combined organic phases were washed with brine (1 x 10 ml) then dried (Na2SO4), filtered and the filtrate concentrated under reduced pressure. The resulting material (28 mg, 0.07 mmol) in MeOH (5 ml) was treated with conc. HCl (1 drop) and the ensuing mixture was stirred magnetically at 291 K for 18 h. The methanol was then removed under reduced pressure; water (10 ml) was added to the residue and the resulting mixture extracted with ethyl acetate (3 x 10 ml). The combined organic phases were then dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue thus obtained was subjected to column chromatography (silica, 19:1 v/v ethyl acetate - methanol elution) to afford, after concentration of the appropriate fractions (Rf = 0.4), a white solid. Recrystallization of this material (from methanol-DCM) afforded the title compound (I) (20 mg, 91%) as colourless crystals, m.p. 445–446 K (Found: M+., 324.0032 and 322.0053. C11H1581BrO6 and C11H1579BrO6 requires 324.0032 and 322.0052, respectively). 1H NMR (300 MHz, CD3OD) δ 7.05 (s, 1H, ArH), 5.04 (d, J 3.8 Hz, 1H), 3.89 (s, 3H), 3.80 (s, 3H), 3.75 (m, 1H), 3.60 (m, 2H); 13C NMR (75 MHz, CD3OD) δ 148.2 (C), 144.6 (C), 139.8 (C), 132.1 (C), 108.1 (C), 107.5 (C), 74.9 (CH), 72.0 (CH), 63.6 (CH2), 59.5 (OCH3), 55.4 (OCH3); νmax (NaCl)/cm-1 3365 (broad), 2938, 1594, 1495, 1410, 1314, 1176, 1097, 856.

Refinement top

Reflections with sinθ/λ<0.1 were rejected as unreliable as they are in the vicinity of the beam-stop shadow.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of small radius.
[Figure 2] Fig. 2. Unit-cell packing diagram of C11H15BrO6. Hydrogen atoms are drawn as circles with small radii.
[Figure 3] Fig. 3. The structure of compound (II)
(1R,2R)-1-(2-Bromo-4-hydroxy-3,5-dimethoxyphenyl)-2,3- dihydroxypropanol top
Crystal data top
C11H15BrO6Dx = 1.692 Mg m3
Mr = 323.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 14986 reflections
a = 6.6461 (1) Åθ = 2.6–27.5°
b = 11.2214 (2) ŵ = 3.26 mm1
c = 17.0108 (4) ÅT = 200 K
V = 1268.64 (4) Å3Block, colourless
Z = 40.36 × 0.28 × 0.27 mm
F(000) = 656
Data collection top
Nonius KappaCCD
diffractometer
2296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scans with CCDθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 88
Tmin = 0.380, Tmax = 0.415k = 1314
26121 measured reflectionsl = 2222
2916 independent reflections
Refinement top
Refinement on F2Only H-atom coordinates refined
Least-squares matrix: full Method, part 1, Chebychev polynomial, (Carruthers & Watkin, 1979, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 20.2 30.3 18.6 8.71 1.66
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.034
wR(F2) = 0.058Δρmax = 0.70 e Å3
S = 0.91Δρmin = 0.65 e Å3
2907 reflectionsExtinction correction: Larson (1970), Equation 22
210 parametersExtinction coefficient: 173 (9)
44 restraintsAbsolute structure: Flack (1983), 1214 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (9)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C11H15BrO6V = 1268.64 (4) Å3
Mr = 323.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6461 (1) ŵ = 3.26 mm1
b = 11.2214 (2) ÅT = 200 K
c = 17.0108 (4) Å0.36 × 0.28 × 0.27 mm
Data collection top
Nonius KappaCCD
diffractometer
2916 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2296 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.415Rint = 0.047
26121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022Only H-atom coordinates refined
wR(F2) = 0.058Δρmax = 0.70 e Å3
S = 0.91Δρmin = 0.65 e Å3
2907 reflectionsAbsolute structure: Flack (1983), 1214 Friedel pairs
210 parametersAbsolute structure parameter: 0.007 (9)
44 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br70.71340 (4)0.68575 (2)0.268949 (18)0.0358
O90.3273 (3)0.8058 (2)0.46981 (11)0.0372
O110.0799 (3)0.62452 (19)0.41226 (11)0.0277
O130.5555 (3)0.51920 (18)0.49792 (12)0.0326
O140.0461 (3)0.97329 (16)0.23181 (13)0.0298
O160.1867 (3)0.93279 (17)0.10984 (10)0.0286
O170.5445 (3)0.81131 (19)0.12419 (11)0.0314
C10.4695 (3)0.7733 (2)0.26163 (17)0.0234
C20.3472 (4)0.7884 (2)0.32756 (15)0.0228
C30.1705 (4)0.8547 (2)0.31769 (15)0.0238
C40.1200 (4)0.9032 (2)0.24574 (14)0.0237
C50.2422 (4)0.8849 (2)0.18035 (14)0.0237
C60.4186 (3)0.8203 (2)0.18853 (14)0.0241
C80.3924 (4)0.7314 (2)0.40585 (15)0.0232
C100.2937 (4)0.6088 (2)0.41383 (13)0.0215
C120.3465 (4)0.5455 (2)0.49012 (16)0.0274
C150.1565 (4)1.0135 (3)0.29855 (17)0.0345
C180.5083 (7)0.7077 (3)0.0766 (2)0.0545
H90.415 (4)0.824 (3)0.4971 (18)0.0440*
H110.024 (5)0.571 (2)0.3902 (18)0.0340*
H130.609 (5)0.577 (2)0.514 (2)0.0400*
H160.291 (4)0.943 (3)0.0876 (18)0.0350*
H310.085 (2)0.8677 (11)0.3605 (10)0.0285*
H810.537 (3)0.7206 (18)0.4101 (12)0.0279*
H1010.335 (3)0.5596 (17)0.3687 (11)0.0258*
H1210.307 (3)0.5945 (18)0.5340 (11)0.0328*
H1220.272 (3)0.4704 (16)0.4909 (13)0.0328*
H1510.256 (3)1.071 (2)0.2799 (13)0.0414*
H1520.069 (3)1.053 (2)0.3358 (13)0.0414*
H1530.222 (4)0.9479 (18)0.3252 (13)0.0414*
H1810.594 (4)0.712 (2)0.0322 (14)0.0654*
H1820.370 (3)0.707 (2)0.0596 (17)0.0654*
H1830.537 (5)0.6359 (19)0.1056 (14)0.0654*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br70.02523 (12)0.03501 (13)0.04712 (15)0.00987 (11)0.00413 (13)0.00840 (14)
O90.0540 (14)0.0312 (9)0.0263 (9)0.0018 (10)0.0115 (8)0.0080 (9)
O110.0191 (9)0.0343 (10)0.0296 (10)0.0032 (7)0.0012 (7)0.0022 (8)
O130.0291 (10)0.0390 (11)0.0296 (10)0.0046 (8)0.0038 (8)0.0037 (9)
O140.0279 (9)0.0356 (9)0.0260 (8)0.0122 (7)0.0002 (9)0.0057 (9)
O160.0269 (10)0.0357 (9)0.0233 (9)0.0055 (8)0.0019 (8)0.0072 (7)
O170.0309 (9)0.0312 (9)0.0321 (9)0.0015 (9)0.0095 (7)0.0030 (9)
C10.0194 (10)0.0188 (9)0.0319 (13)0.0000 (8)0.0008 (10)0.0009 (10)
C20.0237 (11)0.0210 (12)0.0238 (12)0.0015 (8)0.0043 (9)0.0008 (9)
C30.0236 (14)0.0280 (11)0.0197 (11)0.0028 (9)0.0006 (9)0.0010 (9)
C40.0221 (11)0.0226 (10)0.0263 (14)0.0031 (9)0.0018 (9)0.0019 (9)
C50.0256 (15)0.0233 (10)0.0221 (11)0.0020 (9)0.0010 (9)0.0012 (9)
C60.0242 (11)0.0222 (11)0.0260 (12)0.0014 (11)0.0049 (9)0.0010 (11)
C80.0210 (12)0.0238 (11)0.0249 (13)0.0010 (9)0.0033 (9)0.0005 (10)
C100.0201 (10)0.0226 (10)0.0219 (11)0.0003 (11)0.0002 (11)0.0009 (8)
C120.0273 (13)0.0301 (13)0.0247 (13)0.0000 (9)0.0013 (10)0.0022 (10)
C150.0348 (15)0.0391 (15)0.0296 (13)0.0172 (12)0.0033 (11)0.0022 (12)
C180.073 (2)0.048 (2)0.0422 (18)0.0036 (17)0.0220 (17)0.0157 (15)
Geometric parameters (Å, º) top
Br7—C11.899 (2)C3—C41.381 (3)
O9—C81.438 (3)C3—H310.933 (17)
O9—H90.773 (18)C4—C51.392 (4)
O11—C101.432 (3)C5—C61.385 (3)
O11—H110.799 (17)C8—C101.530 (3)
O13—C121.426 (3)C8—H810.972 (17)
O13—H130.789 (18)C10—C121.521 (4)
O14—C41.376 (3)C10—H1010.985 (17)
O14—C151.425 (3)C12—H1210.964 (17)
O16—C51.365 (3)C12—H1220.977 (17)
O16—H160.797 (17)C15—H1510.973 (17)
O17—C61.381 (3)C15—H1520.965 (18)
O17—C181.437 (4)C15—H1530.968 (17)
C1—C21.395 (4)C18—H1810.948 (18)
C1—C61.392 (4)C18—H1820.963 (18)
C2—C31.401 (3)C18—H1830.964 (18)
C2—C81.508 (3)
Br7···O14i3.252 (2)O11···O14v2.989 (3)
Br7···C4i3.368 (2)O13···O16i2.690 (3)
Br7···C5i3.497 (2)O13···O17i3.194 (3)
Br7···O11ii3.514 (2)O13···C3iv3.525 (3)
Br7···O16i3.571 (2)O14···C10vi3.340 (3)
O9···O13iii2.724 (3)O17···C12vii3.348 (3)
O9···O11iv2.730 (3)O17···C10vii3.566 (3)
O11···O16v2.812 (3)
C8—O9—H9112 (3)C2—C8—H81108.4 (12)
C10—O11—H11112 (2)O9—C8—H81108.3 (12)
C12—O13—H13108 (3)C10—C8—H81107.8 (12)
C4—O14—C15117.2 (2)C8—C10—O11108.2 (2)
C5—O16—H16104 (3)C8—C10—C12113.4 (2)
C6—O17—C18113.8 (2)O11—C10—C12107.6 (2)
Br7—C1—C2120.47 (19)C8—C10—H101108.3 (12)
Br7—C1—C6117.50 (18)O11—C10—H101109.5 (12)
C2—C1—C6122.0 (2)C12—C10—H101109.8 (12)
C1—C2—C3117.2 (2)C10—C12—O13113.6 (2)
C1—C2—C8122.8 (2)C10—C12—H121109.3 (12)
C3—C2—C8119.9 (2)O13—C12—H121108.2 (13)
C2—C3—C4121.3 (2)C10—C12—H122107.3 (13)
C2—C3—H31119.8 (11)O13—C12—H122108.2 (13)
C4—C3—H31118.9 (11)H121—C12—H122110.1 (15)
C3—C4—O14124.9 (2)O14—C15—H151107.3 (13)
C3—C4—C5120.6 (2)O14—C15—H152111.0 (14)
O14—C4—C5114.5 (2)H151—C15—H152108.7 (15)
C4—C5—O16119.1 (2)O14—C15—H153111.3 (13)
C4—C5—C6119.4 (2)H151—C15—H153110.5 (15)
O16—C5—C6121.5 (2)H152—C15—H153108.0 (15)
C1—C6—C5119.6 (2)O17—C18—H181107.8 (15)
C1—C6—O17122.2 (2)O17—C18—H182109.7 (15)
C5—C6—O17118.1 (2)H181—C18—H182109.5 (16)
C2—C8—O9111.2 (2)O17—C18—H183110.8 (15)
C2—C8—C10112.0 (2)H181—C18—H183109.4 (16)
O9—C8—C10109.0 (2)H182—C18—H183109.5 (16)
Br7—C1—C2—C3179.6 (2)O17—C6—C1—C2176.3 (2)
Br7—C1—C2—C83.8 (3)O17—C6—C5—C4175.1 (2)
Br7—C1—C6—O174.1 (3)C1—C2—C3—C40.1 (3)
Br7—C1—C6—C5179.9 (2)C1—C2—C8—C1090.6 (3)
O9—C8—C2—C1147.1 (2)C1—C6—O17—C1891.6 (3)
O9—C8—C2—C336.4 (3)C1—C6—C5—C40.9 (3)
O9—C8—C10—O1159.3 (2)C2—C1—C6—C50.4 (3)
O9—C8—C10—C1260.0 (3)C2—C3—C4—C51.5 (4)
O11—C10—C8—C264.2 (3)C2—C8—C10—C12176.5 (2)
O11—C10—C12—O13177.4 (2)C3—C2—C1—C60.8 (3)
O13—C12—C10—C863.0 (3)C3—C2—C8—C1085.9 (3)
O14—C4—C3—C2177.2 (2)C3—C4—O14—C1510.0 (4)
O14—C4—C5—O162.0 (3)C3—C4—C5—C61.9 (4)
O14—C4—C5—C6177.0 (2)C4—C3—C2—C8176.9 (2)
O16—C5—C4—C3179.2 (2)C5—C4—O14—C15168.8 (2)
O16—C5—C6—O173.8 (3)C5—C6—O17—C1892.5 (3)
O16—C5—C6—C1179.8 (2)C6—C1—C2—C8175.8 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O11iv0.77 (3)1.98 (3)2.730 (3)164 (3)
O11—H11···O14v0.80 (3)2.35 (3)2.989 (3)137 (3)
O11—H11···O16v0.80 (3)2.09 (3)2.812 (3)150 (3)
O13—H13···O9iv0.79 (3)1.98 (3)2.724 (3)158 (3)
O16—H16···O170.80 (3)2.33 (3)2.752 (3)114 (3)
O16—H16···O13vii0.80 (3)1.97 (3)2.690 (3)149 (3)
Symmetry codes: (iv) x+1/2, y+3/2, z+1; (v) x, y1/2, z+1/2; (vii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15BrO6
Mr323.14
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)6.6461 (1), 11.2214 (2), 17.0108 (4)
V3)1268.64 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.36 × 0.28 × 0.27
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.380, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
26121, 2916, 2296
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 0.91
No. of reflections2907
No. of parameters210
No. of restraints44
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.70, 0.65
Absolute structureFlack (1983), 1214 Friedel pairs
Absolute structure parameter0.007 (9)

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEPII (Johnson 1976) in TEXSAN (Molecular Structure Corporation, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O11i0.77 (3)1.98 (3)2.730 (3)164 (3)
O11—H11···O14ii0.80 (3)2.35 (3)2.989 (3)137 (3)
O11—H11···O16ii0.80 (3)2.09 (3)2.812 (3)150 (3)
O13—H13···O9i0.79 (3)1.98 (3)2.724 (3)158 (3)
O16—H16···O170.80 (3)2.33 (3)2.752 (3)114 (3)
O16—H16···O13iii0.80 (3)1.97 (3)2.690 (3)149 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds