Download citation
Download citation
link to html
In the mol­ecule of the title compound, C16H15NO, all bond lengths and angles are within normal ranges. The dihedral angle between the two aromatic rings is of 62.80 (1)°. The crystal packing is stabilized by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054542/bt2567sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054542/bt2567Isup2.hkl
Contains datablock I

CCDC reference: 672821

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.051
  • wR factor = 0.152
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Recently we have reported the structure of 4-methoxy-N-[3-(2-nitrophenyl)allylidene]aniline, (II) (Yang et al., 2006). As part of our ongoing studies on push-pull Schiff base compounds, the title compound, (I), was synthesized and its structure is presented here.

In the molecule of the title compound, all bond lengths and angles show normal values (Allen et al., 1987) and are comparable with those in (II). The whole molecule is non-planar, with a dihedral angle of 62.80 (1)° between the two aromatic rings, in contrast to that of 4.01 (1)° in (II). The crystal strucure is stabilized by a C—H···π interaction (C15—H15A···cg: H15A···Cg 2.708 Å, C15···cg 3.485 Å, C15—H15A···cg 141.6°; symmetry operator: 1/2 - x, 1/2 + y, z, cg is the centroid of the ring C10 to C15).

Related literature top

For related literature, see: Yang et al. (2006); Allen et al. (1987).

Experimental top

The title compound was prepared according to the literature method of Yang et al. (2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of five days.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the c axis.
4-Methoxy-N-(3-phenylallylidene)aniline top
Crystal data top
C16H15NODx = 1.213 Mg m3
Mr = 237.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4641 reflections
a = 7.2170 (9) Åθ = 2.5–25.8°
b = 6.3101 (8) ŵ = 0.08 mm1
c = 57.061 (7) ÅT = 293 K
V = 2598.6 (6) Å3Block, yellow
Z = 80.43 × 0.35 × 0.16 mm
F(000) = 1008
Data collection top
Siemens SMART 1000 CCD area detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 76
Tmin = 0.968, Tmax = 0.988l = 7068
13125 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.0047P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2545 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (11)
Crystal data top
C16H15NOV = 2598.6 (6) Å3
Mr = 237.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2170 (9) ŵ = 0.08 mm1
b = 6.3101 (8) ÅT = 293 K
c = 57.061 (7) Å0.43 × 0.35 × 0.16 mm
Data collection top
Siemens SMART 1000 CCD area detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2180 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.027
13125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
2545 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0834 (2)0.1903 (3)0.15889 (3)0.0406 (4)
H11A0.14240.26400.14690.049*
C130.0018 (2)0.1614 (3)0.19944 (3)0.0391 (4)
C140.0944 (2)0.0240 (3)0.19445 (3)0.0429 (4)
H14A0.15490.09640.20640.051*
C150.1006 (2)0.1014 (3)0.17184 (3)0.0421 (4)
H15A0.16500.22590.16870.051*
N10.0165 (2)0.0590 (2)0.12986 (2)0.0453 (4)
C50.0877 (2)0.5033 (3)0.05198 (3)0.0461 (4)
H5A0.14560.37360.05450.055*
C120.0924 (2)0.2686 (3)0.18164 (3)0.0417 (4)
H12A0.15850.39170.18490.050*
O10.0046 (2)0.2257 (2)0.22245 (2)0.0548 (4)
C10.0695 (3)0.8103 (3)0.06647 (3)0.0507 (5)
H1B0.11670.88890.07890.061*
C80.0343 (3)0.3294 (3)0.10091 (3)0.0466 (4)
H8A0.04940.22980.08910.056*
C30.0120 (3)0.7744 (3)0.02546 (4)0.0588 (6)
H3A0.02220.82620.01030.071*
C40.0749 (3)0.5832 (3)0.02956 (3)0.0538 (5)
H4A0.12520.50760.01710.065*
C90.0278 (3)0.2554 (3)0.12480 (3)0.0458 (4)
H9A0.03190.35400.13690.055*
C20.0837 (3)0.8885 (3)0.04397 (4)0.0580 (5)
H2A0.14151.01800.04130.070*
C70.0199 (3)0.5322 (3)0.09489 (3)0.0471 (5)
H7A0.01250.63040.10700.057*
C60.0146 (2)0.6149 (3)0.07092 (3)0.0414 (4)
C100.0111 (2)0.0051 (3)0.15358 (3)0.0376 (4)
C160.0889 (4)0.4160 (4)0.22840 (4)0.0744 (7)
H16A0.07340.44390.24480.112*
H16B0.21830.40170.22490.112*
H16C0.03800.53130.21950.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0415 (9)0.0397 (9)0.0404 (9)0.0017 (7)0.0034 (7)0.0053 (7)
C130.0384 (9)0.0430 (9)0.0360 (8)0.0034 (7)0.0013 (6)0.0003 (7)
C140.0428 (9)0.0435 (9)0.0424 (9)0.0045 (7)0.0051 (7)0.0058 (7)
C150.0406 (9)0.0391 (9)0.0467 (9)0.0059 (7)0.0008 (7)0.0006 (7)
N10.0535 (9)0.0450 (8)0.0374 (8)0.0018 (7)0.0009 (6)0.0007 (6)
C50.0493 (10)0.0436 (10)0.0454 (9)0.0041 (8)0.0012 (8)0.0023 (8)
C120.0431 (9)0.0366 (9)0.0453 (9)0.0059 (7)0.0007 (7)0.0003 (7)
O10.0682 (9)0.0590 (8)0.0373 (7)0.0089 (7)0.0028 (6)0.0052 (6)
C10.0504 (11)0.0397 (10)0.0618 (11)0.0012 (8)0.0061 (9)0.0000 (8)
C80.0550 (11)0.0466 (10)0.0383 (9)0.0034 (8)0.0010 (8)0.0004 (8)
C30.0630 (13)0.0591 (12)0.0543 (12)0.0064 (10)0.0098 (9)0.0171 (10)
C40.0611 (12)0.0581 (12)0.0422 (9)0.0018 (10)0.0017 (8)0.0006 (8)
C90.0494 (10)0.0483 (10)0.0398 (9)0.0001 (8)0.0034 (7)0.0011 (8)
C20.0553 (12)0.0423 (10)0.0763 (14)0.0025 (9)0.0055 (10)0.0158 (9)
C70.0526 (11)0.0466 (10)0.0422 (9)0.0018 (8)0.0039 (8)0.0038 (8)
C60.0407 (9)0.0387 (9)0.0447 (9)0.0031 (7)0.0005 (7)0.0012 (7)
C100.0373 (9)0.0386 (8)0.0368 (8)0.0040 (7)0.0019 (6)0.0007 (7)
C160.0997 (19)0.0715 (15)0.0522 (12)0.0198 (14)0.0039 (12)0.0215 (11)
Geometric parameters (Å, º) top
C11—C101.386 (2)C1—C21.379 (3)
C11—C121.390 (2)C1—C61.397 (2)
C11—H11A0.9300C1—H1B0.9300
C13—O11.3752 (19)C8—C71.329 (3)
C13—C121.384 (2)C8—C91.442 (2)
C13—C141.390 (2)C8—H8A0.9300
C14—C151.380 (2)C3—C21.379 (3)
C14—H14A0.9300C3—C41.380 (3)
C15—C101.398 (2)C3—H3A0.9300
C15—H15A0.9300C4—H4A0.9300
N1—C91.275 (2)C9—H9A0.9300
N1—C101.413 (2)C2—H2A0.9300
C5—C41.378 (2)C7—C61.465 (2)
C5—C61.394 (2)C7—H7A0.9300
C5—H5A0.9300C16—H16A0.9600
C12—H12A0.9300C16—H16B0.9600
O1—C161.418 (3)C16—H16C0.9600
C10—C11—C12121.79 (15)C2—C3—H3A120.1
C10—C11—H11A119.1C4—C3—H3A120.1
C12—C11—H11A119.1C5—C4—C3120.52 (19)
O1—C13—C12124.90 (16)C5—C4—H4A119.7
O1—C13—C14115.29 (15)C3—C4—H4A119.7
C12—C13—C14119.79 (15)N1—C9—C8122.08 (17)
C15—C14—C13120.35 (15)N1—C9—H9A119.0
C15—C14—H14A119.8C8—C9—H9A119.0
C13—C14—H14A119.8C3—C2—C1119.89 (18)
C14—C15—C10120.78 (16)C3—C2—H2A120.1
C14—C15—H15A119.6C1—C2—H2A120.1
C10—C15—H15A119.6C8—C7—C6125.90 (17)
C9—N1—C10119.80 (15)C8—C7—H7A117.0
C4—C5—C6120.64 (17)C6—C7—H7A117.0
C4—C5—H5A119.7C5—C6—C1117.99 (16)
C6—C5—H5A119.7C5—C6—C7122.28 (16)
C13—C12—C11119.29 (16)C1—C6—C7119.72 (16)
C13—C12—H12A120.4C11—C10—C15118.00 (15)
C11—C12—H12A120.4C11—C10—N1117.67 (14)
C13—O1—C16117.53 (15)C15—C10—N1124.29 (15)
C2—C1—C6121.14 (18)O1—C16—H16A109.5
C2—C1—H1B119.4O1—C16—H16B109.5
C6—C1—H1B119.4H16A—C16—H16B109.5
C7—C8—C9123.60 (17)O1—C16—H16C109.5
C7—C8—H8A118.2H16A—C16—H16C109.5
C9—C8—H8A118.2H16B—C16—H16C109.5
C2—C3—C4119.80 (18)
O1—C13—C14—C15178.76 (15)C9—C8—C7—C6176.14 (17)
C12—C13—C14—C150.2 (3)C4—C5—C6—C10.7 (3)
C13—C14—C15—C100.2 (3)C4—C5—C6—C7177.93 (17)
O1—C13—C12—C11177.96 (16)C2—C1—C6—C51.4 (3)
C14—C13—C12—C110.9 (2)C2—C1—C6—C7177.27 (18)
C10—C11—C12—C131.2 (3)C8—C7—C6—C523.2 (3)
C12—C13—O1—C160.1 (3)C8—C7—C6—C1155.4 (2)
C14—C13—O1—C16179.01 (18)C12—C11—C10—C150.8 (2)
C6—C5—C4—C30.6 (3)C12—C11—C10—N1178.40 (15)
C2—C3—C4—C51.2 (3)C14—C15—C10—C110.1 (2)
C10—N1—C9—C8179.82 (16)C14—C15—C10—N1177.50 (16)
C7—C8—C9—N1170.2 (2)C9—N1—C10—C11150.54 (18)
C4—C3—C2—C10.5 (3)C9—N1—C10—C1532.0 (3)
C6—C1—C2—C30.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgi0.932.713.49142
Symmetry code: (i) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H15NO
Mr237.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.2170 (9), 6.3101 (8), 57.061 (7)
V3)2598.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.35 × 0.16
Data collection
DiffractometerSiemens SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13125, 2545, 2180
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.09
No. of reflections2545
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgi0.932.713.49142
Symmetry code: (i) x1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds