Download citation
Download citation
link to html
The asymmetric unit of the title compound, C6H10N3O2+·C7H5O3, contains one 2-amino-4,6-dimethoxy­pyrimidinium cation and a salicylate anion. The 2-amino-4,6-dimethoxy­pyrimidinium cation inter­acts with the carboxyl­ate group of the salicylate anion through a pair of nearly parallel N—H...O hydrogen bonds, forming an R22(8) ring motif. These motifs are centrosymmetrically paired via N—H...O hydrogen bonds, forming a complementary DDAA array. The typical intra­molecular O—H...O hydrogen bond is observed in the anion. The salicylate ions form a hydrogen-bonded supra­molecular chain along the c axis via C—H...O hydrogen bonds involving a benzene hydrogen and one of the O atoms of the carboxyl­ate group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054621/bt2576sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054621/bt2576Isup2.hkl
Contains datablock I

CCDC reference: 672829

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.054
  • wR factor = 0.137
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMN02_ALERT_2_C The minimum difference density is < -0.1*ZMAX*0.75 _refine_diff_density_min given = -0.719 Test value = -0.600 DIFMN03_ALERT_1_C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.662 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097_ALERT_2_C Maximum (Positive) Residual Density ............ 0.66 e/A    PLAT098_ALERT_2_C Minimum (Negative) Residual Density ............ -0.72 e/A   
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Aminopyrimidine-carboxylate interactions are of fundamental importance since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). 2-Aminopyrimidine forms 1:1 adduct with different mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The adducts of carboxylic acid with 2-amino heterocylic ring system have a graph-set motif [R22(8)] (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine- carboxylic acid/ carboxylate systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Muthiah, Francis et al., 2006) and co-crystals (Chinnakali et al., 1999) have been reported. Salicylic acid (Cochran et al., 1953) and its derivatives are widely used as analgesic. They are also used for various gastric tympany and also used externally as antiseptic and antifungal agents for various skin conditions. The crystal structure of salicylic acid and its complexes, for example, antipyrine-salicylic acid (salipyrine) (Singh & Vijayan, 1974) and piperazinedione-salicylic acid (1:2) (Varughese & Kartha, 1982) have been reported in literature. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structures of 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah, Balasubramani et al. 2006), 2-amino-4,6-dimethoxy pyrimidine-4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006) and 2-amino-4,6-dimethoxy pyrimidine phthalic acid (1/1) (Thanigaimani et al., 2007a) and 2-amino-4,6- dimethoxypyrimidinium 4-hydroxybenzoate monohydrate, 2-amino-4,6- dimethoxypyrimidinium 6-carboxypyridine-2-carboxylate monohydrate and 2-amino-4,6-dimethoxypyrimidinium hydrogen (2R, 3R)-tartrate 2-amino-4,6-dimethoxypyrimidine (Thanigaimani et al., 2007b)have been recently reported from our laboratory. The present study investigates the hydrogen bonding patterns in 2-amino-4,6-dimethoxy pyrimidinium salicylate (I).

The asymmetric unit (Fig 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and a salicylate anion, The 2-amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.08 (13)° while for protonated atom N1, the C2—N1—C6 angle is 120.19 (15)°. The carboxylate group of the salicylate anion interacts with the protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif (Etter, 1990; Bernstein et al., 1995). These motifs are centrosymmetrically paired via N—H···O hydrogen bonds to produce the DDAA (D=donor in hydrogen bonds, A=acceptor in hydrogen bonds) array of quadruple hydrogen bonds. This can be represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002), trimethoprim- m-chlorobenzoate (Raj et al., 2003) and pyrimethaminium 3,5-dinitrobenzoate (Subashini et al., 2007). But this array is absent in the crystal structure of a related compound, 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah, Balasubramani et al. 2006) where the bases are paired. In the title compound, these arrays are further connected via C—H···O hydrogen bonds. The salicylate ions form a hydrogen-bonded supramolecular chain along the c axis, via C—H···O hydrogen bonds involving benzene hydrogen (C11) and one of the oxygen atoms of the carboxylate group, as shown in Fig 3. There is a typical intramolecular hydrogen bond between the phenolic –OH group and the carboxylate group of the salicylate anion [S(6)]. π-π stacking interactions between the aromatic rings are also observed. The pyrimidine ring of 2-amino-4,6-dimethoxy pyrimidinium cation has stacking interactions with the benzene rings of salicylate anion, with a perpendicular separation of 3.280 Å, a centroid-to-centroid distance of 3.6363 (8) and slip angle (the angle between the centroid vector and the normal to the plan) of 21.03°. These are typical aromatic stacking values (Hunter, 1994).

Related literature top

For related literature, see: Baker & Santi (1965); Bernstein et al. (1995); Chinnakali et al. (1999); Cochran (1953); Desiraju (1989); Etter (1990); Etter & Adsmond (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah, Balasubramani et al. (2006); Muthiah, Francis et al. (2006); Raj et al. (2003); Robert et al. (2001); Scheinbeim & Schempp (1976); Schwalbe & Williams (1982); Singh & Vijayan (1974); Subashini et al. (2007); Thanigaimani et al. (2006, 2007a,b); Umadevi et al. (2002); Varughese & Kartha (1982).

Experimental top

A hot methanolic solution (20 ml) of 2-amino-4,6-dimethoxy pyrimidine (38 mg, Aldrich) and salicylic acid (34 mg, Loba chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

Refinement top

All H atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.86 Å, respectively [Uiso (H)=1.2 Ueq(parent atom)]. The highest peak in the final difference map (0.66 e Å-3) is at 1.55 Å from N1, the deepest hole (-0.72 e Å-3) is at 0.75 Å from N2.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonding patterns in compound (I). [symmetry code: (i) -x + 2, -y, -z + 2 (ii) x, -y + 1/2, z - 1/2]
[Figure 3] Fig. 3. Hydrogen-bonding (dashed lines) patterns in the supramolecular chain in compound (I) [symmetry code: (ii) x, -y + 1/2, z - 1/2]
2-amino-4,6-dimethoxypyrimidinium salicylate top
Crystal data top
C6H10N3O2+·C7H5O3F(000) = 616
Mr = 293.28Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.1071 (3) Åθ = 3.8–27.5°
b = 14.7657 (6) ŵ = 0.11 mm1
c = 12.2829 (6) ÅT = 120 K
β = 123.465 (3)°Plate-like, colourless
V = 1377.90 (11) Å30.30 × 0.30 × 0.08 mm
Z = 4
Data collection top
Bruker–Nonius Kappa CCD area-detector
diffractometer
2465 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 3.9°
ϕ and ω scansh = 1111
14310 measured reflectionsk = 1719
3136 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.2362P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.66 e Å3
194 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.068 (6)
Crystal data top
C6H10N3O2+·C7H5O3V = 1377.90 (11) Å3
Mr = 293.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1071 (3) ŵ = 0.11 mm1
b = 14.7657 (6) ÅT = 120 K
c = 12.2829 (6) Å0.30 × 0.30 × 0.08 mm
β = 123.465 (3)°
Data collection top
Bruker–Nonius Kappa CCD area-detector
diffractometer
2465 reflections with I > 2σ(I)
14310 measured reflectionsRint = 0.034
3136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.11Δρmax = 0.66 e Å3
3136 reflectionsΔρmin = 0.72 e Å3
194 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20130 (12)0.06793 (7)0.72454 (10)0.0246 (3)
O20.37869 (12)0.09584 (7)0.48494 (10)0.0217 (3)
N10.56670 (15)0.04949 (8)0.68864 (12)0.0189 (3)
N20.77862 (15)0.00635 (9)0.89739 (12)0.0250 (4)
N30.49174 (15)0.03420 (8)0.81536 (12)0.0199 (4)
C20.61084 (17)0.00665 (9)0.80033 (14)0.0192 (4)
C40.32600 (18)0.03031 (10)0.71396 (14)0.0194 (4)
C50.26878 (18)0.01071 (10)0.59397 (14)0.0206 (4)
C60.39631 (17)0.05140 (9)0.58543 (14)0.0184 (4)
C70.2563 (2)0.11184 (12)0.84644 (17)0.0301 (5)
C80.20153 (17)0.10678 (10)0.37204 (14)0.0216 (4)
O30.81007 (12)0.13044 (7)0.66450 (10)0.0246 (3)
O41.03098 (13)0.07809 (7)0.85566 (10)0.0238 (3)
O50.86976 (14)0.22213 (8)0.51703 (11)0.0291 (3)
C91.10073 (18)0.16797 (9)0.72967 (14)0.0189 (4)
C101.04166 (19)0.21540 (10)0.61315 (15)0.0223 (4)
C111.1641 (2)0.25754 (10)0.59510 (17)0.0275 (5)
C121.3417 (2)0.25220 (11)0.69058 (17)0.0292 (5)
C131.4024 (2)0.20592 (11)0.80650 (17)0.0281 (5)
C141.28197 (18)0.16428 (10)0.82527 (15)0.0229 (4)
C150.97425 (18)0.12227 (9)0.75325 (14)0.0187 (4)
H10.646800.075500.683000.0230*
H2A0.810900.020000.969800.0300*
H2B0.855500.032500.888200.0300*
H50.151300.010200.524600.0250*
H7A0.322600.165300.856300.0450*
H7B0.154400.128300.846600.0450*
H7C0.328300.071100.917500.0450*
H8A0.149900.048300.338800.0320*
H8B0.204200.139900.305900.0320*
H8C0.132600.139400.396300.0320*
H5A0.810800.194900.538300.0440*
H111.125900.289300.518500.0330*
H121.422100.280000.677100.0350*
H131.522200.203000.870500.0340*
H141.321900.133300.902700.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0316 (6)0.0247 (6)0.0019 (4)0.0139 (4)0.0051 (5)
O20.0179 (5)0.0281 (6)0.0174 (5)0.0004 (4)0.0086 (4)0.0049 (4)
N10.0159 (6)0.0222 (6)0.0192 (6)0.0008 (4)0.0101 (5)0.0018 (5)
N20.0186 (6)0.0342 (8)0.0209 (7)0.0001 (5)0.0100 (5)0.0089 (5)
N30.0193 (6)0.0209 (6)0.0210 (7)0.0020 (5)0.0120 (5)0.0025 (5)
C20.0197 (7)0.0185 (7)0.0209 (7)0.0027 (5)0.0121 (6)0.0018 (5)
C40.0221 (7)0.0175 (7)0.0227 (8)0.0006 (5)0.0150 (6)0.0003 (6)
C50.0181 (6)0.0223 (8)0.0210 (7)0.0008 (5)0.0105 (6)0.0002 (6)
C60.0194 (7)0.0185 (7)0.0167 (7)0.0019 (5)0.0096 (6)0.0005 (5)
C70.0276 (8)0.0366 (9)0.0314 (9)0.0020 (7)0.0197 (7)0.0108 (7)
C80.0184 (7)0.0246 (8)0.0170 (7)0.0006 (5)0.0067 (6)0.0029 (6)
O30.0181 (5)0.0307 (6)0.0212 (6)0.0016 (4)0.0085 (4)0.0052 (4)
O40.0224 (5)0.0291 (6)0.0186 (6)0.0017 (4)0.0105 (4)0.0045 (4)
O50.0305 (6)0.0311 (6)0.0234 (6)0.0006 (5)0.0135 (5)0.0056 (5)
C90.0226 (7)0.0155 (7)0.0211 (8)0.0019 (5)0.0137 (6)0.0029 (5)
C100.0283 (8)0.0184 (7)0.0231 (8)0.0005 (6)0.0160 (6)0.0020 (6)
C110.0428 (9)0.0189 (8)0.0317 (9)0.0017 (6)0.0274 (8)0.0008 (6)
C120.0364 (8)0.0213 (8)0.0456 (10)0.0066 (6)0.0325 (8)0.0055 (7)
C130.0239 (7)0.0245 (8)0.0388 (10)0.0025 (6)0.0191 (7)0.0058 (7)
C140.0236 (7)0.0195 (7)0.0279 (8)0.0019 (5)0.0156 (6)0.0029 (6)
C150.0212 (7)0.0164 (7)0.0186 (7)0.0014 (5)0.0111 (6)0.0023 (5)
Geometric parameters (Å, º) top
O1—C41.333 (2)C5—H50.9303
O1—C71.444 (2)C7—H7A0.9601
O2—C61.3272 (18)C7—H7C0.9604
O2—C81.4439 (19)C7—H7B0.9604
O3—C151.281 (2)C8—H8B0.9600
O4—C151.2482 (18)C8—H8C0.9598
O5—C101.348 (2)C8—H8A0.9600
O5—H5A0.8203C9—C141.403 (2)
N1—C21.3548 (19)C9—C151.495 (3)
N1—C61.359 (2)C9—C101.407 (2)
N2—C21.322 (2)C10—C111.397 (3)
N3—C41.326 (2)C11—C121.380 (3)
N3—C21.340 (2)C12—C131.390 (2)
N1—H10.8603C13—C141.383 (3)
N2—H2B0.8598C11—H110.9302
N2—H2A0.8605C12—H120.9305
C4—C51.401 (2)C13—H130.9297
C5—C61.362 (3)C14—H140.9298
O1···C8i3.224 (2)C11···H8Bx2.8439
O2···C6ii3.410 (2)C12···H8Bx2.8406
O2···N1ii3.2507 (17)C13···H8Bx2.9028
O3···O52.5486 (17)C14···H8Bx2.9551
O3···N12.675 (2)C15···H8Aii2.7368
O4···N22.822 (2)C15···H5A2.4500
O4···N2iii2.8216 (16)C15···H2B2.7661
O5···O32.5486 (17)C15···H12.6975
O1···H8Ci2.7542C15···H11iv3.0438
O1···H8Ai2.8592H1···O31.8147
O3···H5A1.8221H1···C152.6975
O3···H8Aii2.6676H1···H2B2.2550
O3···H11.8147H2A···O4iii2.0002
O4···H2Aiii2.0002H2A···H2Biii2.5421
O4···H142.5159H2B···H12.2550
O4···H8Aii2.7499H2B···N2iii2.9478
O4···H11iv2.5836H2B···C152.7661
O4···H2B1.9676H2B···O41.9676
O5···H7Bv2.8527H2B···H2Aiii2.5421
O5···H13vi2.8631H5···H8A2.3437
N1···O2ii3.2507 (17)H5···C82.5884
N1···O32.675 (2)H5···H5i2.4927
N2···O42.822 (2)H5···H8C2.4199
N2···O4iii2.8216 (16)H5A···C152.4500
N2···H2Biii2.9478H5A···O31.8221
N3···H7C2.4791H7A···N32.6883
N3···H12vii2.8409H7B···C8i2.8670
N3···H7A2.6883H7B···O5xi2.8527
C2···C13viii3.525 (2)H7C···N32.4791
C4···C14viii3.300 (2)H8A···C52.7498
C5···C14viii3.585 (2)H8A···C15ii2.7368
C6···C13viii3.524 (2)H8A···H52.3437
C6···O2ii3.410 (2)H8A···O1i2.8592
C6···C12viii3.379 (2)H8A···O3ii2.6676
C7···C8i3.500 (3)H8A···O4ii2.7499
C8···O1i3.224 (2)H8B···C10vi2.9149
C8···C7i3.500 (3)H8B···C11vi2.8439
C8···C14vi3.572 (2)H8B···C9vi2.9732
C12···C6ix3.379 (2)H8B···C12vi2.8406
C13···C6ix3.524 (2)H8B···C13vi2.9028
C13···C2ix3.525 (2)H8B···C14vi2.9551
C14···C8x3.572 (2)H8C···C11viii2.8836
C14···C5ix3.585 (2)H8C···H52.4199
C14···C4ix3.300 (2)H8C···O1i2.7542
C5···H8C2.7790H8C···C52.7790
C5···H8A2.7498H11···O4xii2.5836
C8···H7Bi2.8670H11···C15xii3.0438
C8···H52.5884H12···N3xiii2.8409
C9···H8Bx2.9732H13···O5x2.8631
C10···H8Bx2.9149H14···O42.5159
C11···H8Cix2.8836
C4—O1—C7117.45 (13)O2—C8—H8A109.49
C6—O2—C8116.52 (13)O2—C8—H8C109.50
C10—O5—H5A109.45H8A—C8—H8B109.47
C2—N1—C6120.19 (15)O2—C8—H8B109.48
C2—N3—C4116.08 (13)H8B—C8—H8C109.46
C2—N1—H1119.91H8A—C8—H8C109.43
C6—N1—H1119.90C10—C9—C15121.24 (15)
H2A—N2—H2B120.00C14—C9—C15119.80 (13)
C2—N2—H2A119.99C10—C9—C14118.96 (16)
C2—N2—H2B120.01O5—C10—C11118.12 (14)
N2—C2—N3119.69 (13)C9—C10—C11119.48 (16)
N1—C2—N3122.61 (15)O5—C10—C9122.40 (17)
N1—C2—N2117.70 (15)C10—C11—C12120.23 (16)
O1—C4—C5116.09 (15)C11—C12—C13121.08 (19)
N3—C4—C5125.24 (17)C12—C13—C14119.03 (18)
O1—C4—N3118.67 (13)C9—C14—C13121.22 (15)
C4—C5—C6115.68 (15)O3—C15—C9117.08 (13)
N1—C6—C5120.17 (14)O4—C15—C9119.75 (15)
O2—C6—C5128.23 (15)O3—C15—O4123.17 (16)
O2—C6—N1111.60 (15)C10—C11—H11119.93
C4—C5—H5122.19C12—C11—H11119.84
C6—C5—H5122.13C11—C12—H12119.47
O1—C7—H7B109.43C13—C12—H12119.45
O1—C7—H7C109.49C12—C13—H13120.49
O1—C7—H7A109.53C14—C13—H13120.48
H7A—C7—H7C109.49C9—C14—H14119.42
H7B—C7—H7C109.44C13—C14—H14119.37
H7A—C7—H7B109.44
C7—O1—C4—N30.8 (2)C15—C9—C10—O50.2 (2)
C7—O1—C4—C5179.19 (14)C15—C9—C10—C11179.72 (14)
C8—O2—C6—N1176.54 (12)C10—C9—C14—C130.3 (2)
C8—O2—C6—C53.4 (2)C15—C9—C14—C13179.94 (16)
C2—N1—C6—O2179.69 (13)C10—C9—C15—O31.9 (2)
C2—N1—C6—C50.4 (2)C10—C9—C15—O4177.55 (14)
C6—N1—C2—N2179.57 (13)C14—C9—C15—O3177.71 (13)
C6—N1—C2—N30.8 (2)C14—C9—C15—O42.8 (2)
C4—N3—C2—N2179.46 (14)C14—C9—C10—C110.1 (2)
C4—N3—C2—N10.2 (2)C14—C9—C10—O5179.83 (14)
C2—N3—C4—C51.6 (2)C9—C10—C11—C120.4 (2)
C2—N3—C4—O1178.40 (13)O5—C10—C11—C12179.73 (15)
O1—C4—C5—C6178.04 (13)C10—C11—C12—C130.6 (3)
N3—C4—C5—C62.0 (2)C11—C12—C13—C140.4 (3)
C4—C5—C6—N10.9 (2)C12—C13—C14—C90.1 (3)
C4—C5—C6—O2179.03 (14)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+2, y, z+2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x1, y+1/2, z1/2; (vii) x+2, y1/2, z+3/2; (viii) x1, y, z; (ix) x+1, y, z; (x) x+1, y+1/2, z+1/2; (xi) x+1, y1/2, z+3/2; (xii) x, y+1/2, z1/2; (xiii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.812.675 (2)178
N2—H2A···O4iii0.862.002.8216 (16)159
N2—H2B···O40.861.972.822 (2)173
O5—H5A···O30.821.822.5486 (17)147
C11—H11···O4xii0.932.583.4753 (19)161
Symmetry codes: (iii) x+2, y, z+2; (xii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H10N3O2+·C7H5O3
Mr293.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.1071 (3), 14.7657 (6), 12.2829 (6)
β (°) 123.465 (3)
V3)1377.90 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.08
Data collection
DiffractometerBruker–Nonius Kappa CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14310, 3136, 2465
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.11
No. of reflections3136
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.72

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
O1—C41.333 (2)O5—C101.348 (2)
O1—C71.444 (2)N1—C21.3548 (19)
O2—C61.3272 (18)N1—C61.359 (2)
O2—C81.4439 (19)N2—C21.322 (2)
O3—C151.281 (2)N3—C41.326 (2)
O4—C151.2482 (18)N3—C21.340 (2)
C4—O1—C7117.45 (13)O1—C4—N3118.67 (13)
C6—O2—C8116.52 (13)N1—C6—C5120.17 (14)
C2—N1—C6120.19 (15)O2—C6—C5128.23 (15)
C2—N3—C4116.08 (13)O2—C6—N1111.60 (15)
N2—C2—N3119.69 (13)O5—C10—C11118.12 (14)
N1—C2—N3122.61 (15)O5—C10—C9122.40 (17)
N1—C2—N2117.70 (15)O3—C15—C9117.08 (13)
O1—C4—C5116.09 (15)O4—C15—C9119.75 (15)
N3—C4—C5125.24 (17)O3—C15—O4123.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.86001.81002.675 (2)178.00
N2—H2A···O4i0.86002.00002.8216 (16)159.00
N2—H2B···O40.86001.97002.822 (2)173.00
O5—H5A···O30.82001.82002.5486 (17)147.00
C11—H11···O4ii0.93002.58003.4753 (19)161.00
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds