Download citation
Download citation
link to html
In the title compound, [CaI2(C4H8O)(C4H10O2)2], the Ca atom is situated in the centre of a distorted penta­gonal bipyramid. Two iodide anions occupy the axial positions, whereas the five oxygen donor atoms of two mol­ecules of 1,2-dimethoxy­ethane and one mol­ecule of tetra­hydro­furan occupy the equatorial positions. The mol­ecule is located on a crystallographic C2 axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059399/bt2622sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059399/bt2622Isup2.hkl
Contains datablock I

CCDC reference: 672761

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.024
  • wR factor = 0.069
  • Data-to-parameter ratio = 24.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

There are only a few molecular structures of calcium diiodides with ether ligands in literature. At first, Tesh et al. (1994) and Henderson et al. (2005) investigated the structure of (thf)4CaI2, which was used for metathesis reactions with potassium compounds (e.g. potassium cyclopentadienides). Later, Fromm and coworkers were able to charaterize calcium iodides with 1,2-dimethoxyethane (dme) and diglycoldimethylether (diglyme) as ligands such as (dme)(diglyme)CaI2 (diglyme = diglycoldimethylether) (Fromm, 2002), (dme)3CaI(I) (Fromm & Maudez, 2003), and (diglyme)2CaI(I) (Fromm & Maudez, 2003). Single crystals of the later compound were difficult to grow, so a molecular structure does not exist. Junk & Steed (2007) prepared the 15-crown-5 or 18-crown-6 complexes of the heavy alkaline earth metal chlorides, bromides, iodides, and perchlorates and determined their molecular structures. The presence of water leads to the formation of polymers via hydrogen bridges (Fromm, 2001, Fromm, Goesmann et al., 2000), Fromm, Bernardinelli et al., 2000).

Related literature top

For literature on the synthesis and structural characterization of calcium diiodides with ether ligands, see: Tesh et al. (1994) and Henderson et al. (2005) for (thf)4CaI2 (thf = tetrahydrofuran?); Fromm (2002) for (dme)(diglyme)CaI2 (dme = dimethoxyethane?, diglyme = diglycoldimethylether); Fromm & Maudez (2003) for (dme)3CaI(I) and (diglyme)2CaI(I). For literature on crown ether complexes of the heavy alkaline earth metal halides, see: Junk & Steed (2007). See Fromm, Goesmann et al. (2000), Fromm, Bernardinelli et al. (2000), Fromm (2001) for calcium diiodide complexes with hydroxo and ether ligands.

For related literature, see: Gärtner et al. (2007).

Experimental top

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. DME was dried (Na/benzophenone) and distilled prior to use. 1-Naphthylcalcium(thf)4 iodide was prepared according to a literature procedure (Gärtner et al. (2007)). Recrystallization of 1-naphthylcalcium(thf)4 iodide from 1,2-dimethoxyethane led to the formation of single crystals of the title compound at -25 °C due to a Schlenk equilibrium. The yield is approx. 50%. Bis(1-naphthyl)calcium remained in solution.

Refinement top

All hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (thf)(dme)2CaI2, showing 40% probability displacement ellipsoides and the atom-numbering scheme. H atoms have been omitted for clarity. Symmetry operator (A): 1 - x, y, 3/2 - z.
trans-Bis(1,2-dimethoxyethane- κ2O,O')diiodido(tetrahydrofuran-κO)calcium(II) top
Crystal data top
[CaI2(C4H8O)(C4H10O2)2]F(000) = 1064
Mr = 546.22Dx = 1.804 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 6625 reflections
a = 12.8976 (4) Åθ = 2.5–27.5°
b = 11.2682 (4) ŵ = 3.39 mm1
c = 15.2359 (5) ÅT = 183 K
β = 114.715 (2)°Prism, colourless
V = 2011.44 (12) Å30.04 × 0.04 × 0.03 mm
Z = 4
Data collection top
KappaCCD
diffractometer
1892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ϕ and ω scanh = 1616
6625 measured reflectionsk = 1414
2279 independent reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0318P)2 + 3.2686P]
where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max = 0.002
94 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[CaI2(C4H8O)(C4H10O2)2]V = 2011.44 (12) Å3
Mr = 546.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8976 (4) ŵ = 3.39 mm1
b = 11.2682 (4) ÅT = 183 K
c = 15.2359 (5) Å0.04 × 0.04 × 0.03 mm
β = 114.715 (2)°
Data collection top
KappaCCD
diffractometer
1892 reflections with I > 2σ(I)
6625 measured reflectionsRint = 0.020
2279 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2279 reflectionsΔρmin = 0.94 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.24628 (5)0.75000.02044 (15)
I10.582761 (14)0.248498 (14)0.583681 (11)0.03409 (9)
O10.29341 (13)0.29633 (16)0.65423 (12)0.0271 (3)
O20.38695 (14)0.07448 (15)0.66082 (13)0.0311 (4)
O30.50000.45785 (19)0.75000.0277 (5)
C10.2241 (2)0.1915 (2)0.63757 (19)0.0326 (5)
H1A0.14430.20970.59280.039*
H1B0.22480.16290.69920.039*
C20.2712 (2)0.0987 (2)0.59491 (18)0.0338 (5)
H2A0.22500.02540.58310.041*
H2B0.26860.12660.53240.041*
C30.4316 (3)0.0220 (3)0.6253 (3)0.0512 (8)
H3A0.38460.09290.61800.077*
H3B0.51030.03850.67120.077*
H3C0.43020.00040.56250.077*
C40.2358 (2)0.3955 (2)0.6731 (2)0.0379 (6)
H4A0.16120.40620.61870.057*
H4B0.28170.46740.68120.057*
H4C0.22530.38070.73220.057*
C50.4803 (3)0.5323 (2)0.6664 (2)0.0365 (6)
H5A0.41180.50560.60970.044*
H5B0.54680.52980.64990.044*
C60.4632 (3)0.6564 (2)0.6962 (2)0.0451 (7)
H6A0.48910.71720.66290.054*
H6B0.38210.67100.68220.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0186 (3)0.0192 (3)0.0237 (3)0.0000.0090 (3)0.000
I10.03470 (13)0.04437 (14)0.02571 (13)0.00171 (7)0.01510 (9)0.00373 (6)
O10.0209 (8)0.0271 (8)0.0335 (9)0.0033 (7)0.0116 (7)0.0011 (7)
O20.0280 (9)0.0247 (8)0.0379 (9)0.0004 (7)0.0112 (7)0.0074 (7)
O30.0344 (12)0.0197 (11)0.0325 (12)0.0000.0173 (10)0.000
C10.0200 (11)0.0365 (14)0.0373 (13)0.0038 (10)0.0082 (10)0.0023 (11)
C20.0308 (12)0.0327 (13)0.0304 (12)0.0061 (10)0.0053 (10)0.0035 (10)
C30.0524 (18)0.0313 (14)0.072 (2)0.0023 (13)0.0276 (16)0.0161 (14)
C40.0312 (13)0.0371 (14)0.0457 (15)0.0115 (11)0.0163 (12)0.0003 (12)
C50.0474 (15)0.0290 (13)0.0384 (14)0.0019 (11)0.0233 (12)0.0059 (11)
C60.0598 (18)0.0246 (12)0.0659 (18)0.0087 (12)0.0411 (16)0.0116 (12)
Geometric parameters (Å, º) top
Ca1—O32.384 (2)C1—H1B0.9900
Ca1—O2i2.4624 (17)C2—H2A0.9900
Ca1—O22.4624 (17)C2—H2B0.9900
Ca1—O12.5092 (16)C3—H3A0.9800
Ca1—O1i2.5092 (16)C3—H3B0.9800
Ca1—I13.1342 (2)C3—H3C0.9800
Ca1—I1i3.1342 (2)C4—H4A0.9800
O1—C41.436 (3)C4—H4B0.9800
O1—C11.438 (3)C4—H4C0.9800
O2—C21.434 (3)C5—C61.515 (4)
O2—C31.438 (3)C5—H5A0.9900
O3—C51.456 (3)C5—H5B0.9900
O3—C5i1.456 (3)C6—C6i1.512 (6)
C1—C21.488 (4)C6—H6A0.9900
C1—H1A0.9900C6—H6B0.9900
O3—Ca1—O2i141.83 (4)O1—C1—H1B110.0
O3—Ca1—O2141.83 (4)C2—C1—H1B110.0
O2i—Ca1—O276.34 (8)H1A—C1—H1B108.4
O3—Ca1—O177.01 (4)O2—C2—C1108.85 (19)
O2i—Ca1—O1137.52 (6)O2—C2—H2A109.9
O2—Ca1—O167.42 (6)C1—C2—H2A109.9
O3—Ca1—O1i77.01 (4)O2—C2—H2B109.9
O2i—Ca1—O1i67.42 (6)C1—C2—H2B109.9
O2—Ca1—O1i137.51 (6)H2A—C2—H2B108.3
O1—Ca1—O1i154.02 (8)O2—C3—H3A109.5
O3—Ca1—I189.543 (10)O2—C3—H3B109.5
O2i—Ca1—I197.42 (4)H3A—C3—H3B109.5
O2—Ca1—I183.30 (4)O2—C3—H3C109.5
O1—Ca1—I199.55 (4)H3A—C3—H3C109.5
O1i—Ca1—I180.24 (4)H3B—C3—H3C109.5
O3—Ca1—I1i89.543 (10)O1—C4—H4A109.5
O2i—Ca1—I1i83.30 (4)O1—C4—H4B109.5
O2—Ca1—I1i97.42 (4)H4A—C4—H4B109.5
O1—Ca1—I1i80.24 (4)O1—C4—H4C109.5
O1i—Ca1—I1i99.55 (4)H4A—C4—H4C109.5
I1—Ca1—I1i179.09 (2)H4B—C4—H4C109.5
C4—O1—C1109.85 (19)O3—C5—C6105.3 (2)
C4—O1—Ca1124.81 (14)O3—C5—H5A110.7
C1—O1—Ca1110.38 (14)C6—C5—H5A110.7
C2—O2—C3110.1 (2)O3—C5—H5B110.7
C2—O2—Ca1116.08 (14)C6—C5—H5B110.7
C3—O2—Ca1124.35 (16)H5A—C5—H5B108.8
C5—O3—C5i109.6 (3)C6i—C6—C5102.74 (19)
C5—O3—Ca1125.19 (13)C6i—C6—H6A111.2
C5i—O3—Ca1125.19 (13)C5—C6—H6A111.2
O1—C1—C2108.5 (2)C6i—C6—H6B111.2
O1—C1—H1A110.0C5—C6—H6B111.2
C2—C1—H1A110.0H6A—C6—H6B109.1
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[CaI2(C4H8O)(C4H10O2)2]
Mr546.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)183
a, b, c (Å)12.8976 (4), 11.2682 (4), 15.2359 (5)
β (°) 114.715 (2)
V3)2011.44 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.39
Crystal size (mm)0.04 × 0.04 × 0.03
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6625, 2279, 1892
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.06
No. of reflections2279
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.94

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Siemens, 1990).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds