Download citation
Download citation
link to html
The title compound, [Mn2(C7H3NO4)2(H2O)3]n, has been synthesized under hydro­thermal conditions. In the complex, the Mn atom is seven-coordinated by three symmetry-equivalent pyridine-2,6-dicarboxyl­ate ligands and a water mol­ecule in a penta­gonal–bipyramidal coordination environment. A crystallographic twofold rotation axis passes through the bridging water molecule and between adjacent pairs of Mn atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045898/bv2065sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045898/bv2065Isup2.hkl
Contains datablock I

CCDC reference: 672720

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.075
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.25 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.03
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The chemistry of metal complexes containing paramagnetic metal ions and exhibiting extended structures is at the forefront of modern research, due to these compounds' potential applications in molecular magnetism (Field et al., 2006; Rueff et al., 2002; Zeng et al., 2005). The most useful strategy by which to construct such extended one dimensional systems is to employ appropriate bridging ligands, carboxylate for example, capable of binding metal centers through direct bond formation, promoting magnetic interactions. Pyridine-2,6-dicarboxylate (2,6-pdc2-), which has been used as a ligand in homoleptic coordination polymers and coordination complexes, is a suitable building block for two-dimensional arrays (Zhao et al., 2003; Gao et al., 2006). There are a few examples of manganese complexes of 2,6-pdc (Ma, Chen, Chen et al., 2003; Ma, Chen, Liu et al., 2003; Okabe & Oya, 2000; Wei et al., 2005), although many crystal structures of complexes of 2,6-pdc with divalent ions such as CoII, NiII and CuII (Ghosh et al., 2004; Ghosh et al., 2005) have been determined. The reactants we have used are different from those reported previously in the literature in an attempt to obtain a compound analogous to the title complex (I) (Wei et al., 2005). Its crystal structure is presented here. It should be noted that, compound (I) crystallizes in the monoclinic space group C2/c, while the P-1 space group was previously reported (Wei et al., 2005).

The hydrothermal reaction of Mn(NO3)2, 2,6-pdc and 5-bromo-2,4'-bipyridine (5-Br-2,4'-bpy) did not lead to the expected manganese system with coordinated bpy ligands, but to the unexpected formation of (I). Attempts were made to obtain compound (I) under the same conditions in the absence of bpy ligand. The collected crystals were in poor quality and not suitable for X-ray crystallography.

The crystallographically independent unit and atomic numbering of (I) are shown in Fig. 1, and selected bond distances and angles are given in Table 1. A half of (I) is crystallographically independent with a 2-fold axis through O1w. The asymmetric unit consists of one (O2w) and half water (half O1w), one Mn atom and one 2,6-pdc group. The coordination around the Mn atom is pentagonal-bipyramidal. All water molecules are coordinated with metal atoms: O1w atom as a bridge is connected to two neighbouring Mn atoms, while Ow2 atom is coordinated with Mn atom as terminal ligand. The equatorial belt is formed by one N atom (N1) and four O atoms (O2, O2ii, O3, O1w), and the axial positions are occupied by O3 atom and O2w atom [symmetry codes: (ii)-x,-y, -z + 2]. The Mn—O bond lengths fall in the ranges 2.122 (2)–2.4944 (16) Å, and Mn—N bond length is 2.292 (2) Å. These values are consistent with the corresponding distances in the literature (Wei et al., 2005).

In complex (I), the Mn atom is coordinated by four different O atoms of three trans 2,6-pdc ligands, so the complex is extended along c-axis, resulting in the formation of one-dimensional supramolecular chains (Fig.2). The water O1w is connected to the atom O1i by O1w—H1···O1i within one-dimensional chain[symmetrycodes: (i)-x,y,-z + 3/2]. The water O2w is hydrogen bonded to O4iii and Oiv of two neighboring chains through O2w—H2b···O4iii and O2w—H2a···O4iv [symmetry codes: (iii)-x + 1/2,y - 1/2, -z + 3/2; (iv)x,-y,z + 1/2], forming cyclic hydrogen bonded net. Thus, the complex is further assembled into two-dimensional layer by hydrogen-bonding interaction along b-axis. Adjacent sheets cross each other to give a square hydrogen bonded network, in which are filled 2,6-pdc ligand from neighboring chains (Fig.3). The hydrogen bonding interaction plays an important role in stabilizing the crystal structure.

Related literature top

For related literature, see: Field et al. (2006); Gao et al. (2006); Ghosh et al. (2004, 2005); Ma, Chen, Chen et al. (2003); Ma, Chen, Liu et al. (2003); Okabe & Oya (2000); Rueff et al. (2002); Wei et al. (2005); Zeng et al. (2005); Zhao et al. (2003).

Experimental top

In a typical experiment, H2pdc (0.042 g, 0.25 mmol) in an aqueous solution (6 ml) of NaOH (0.040 g, 1 mmol) was mixed with 5-Br-2,4'-bpy (0.0235 g, 0.1 mmol) in EtOH (2 ml); the mixture was then added to an aqueous solution (2 ml) of 50% Mn(NO3)2. The new mixture was placed in a 15-ml Teflon-lined autoclave and heated at 423 K for 4 d. The autoclave was then cooled to temperature at a rate of 4 K h-1. Brown block crystals of (I) deposited on the wall of container were collected and air-dried.

Refinement top

Hydrogen atoms bound to carbon were placed in calculated positions and refined using a riding model with an isotropic displacement parameter fixed at 1.2 times Ueq for the atom to which they are attached. Hydrogen atoms on the water molecule were found in electron-density difference Fourier maps at the stages of the refinement procedure and were refined freely.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small of arbitrary radii. [Symmetry codes: (i)-x, y,-z + 3/2; (ii)-x,-y,-z + 2; (iii)-x + 1/2,y - 1/2, -z + 3/2.]
[Figure 2] Fig. 2. A perspective view of the hydrogen bonded layer of polymer chains. Hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i)-x, y,-z + 3/2; (iii)-x + 1/2,y - 1/2,-z + 3/2; (iv)x,-y,z + 1/2.]
[Figure 3] Fig. 3. A view along the c axis of the network structure of complex (I). Hydrogen bonds are drawn as dashed lines.
Poly[µ2-aqua-diaquabis(µ3-pyridine-2,6-dicarboxylato)manganese(II)] top
Crystal data top
[Mn2(C7H3NO4)2(H2O)3]F(000) = 992
Mr = 494.14Dx = 1.955 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4593 reflections
a = 13.1763 (13) Åθ = 2.6–26.0°
b = 9.7513 (10) ŵ = 1.57 mm1
c = 13.1510 (13) ÅT = 153 K
β = 96.427 (2)°Block, brown
V = 1679.1 (3) Å30.39 × 0.10 × 0.06 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1649 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1211
Tmin = 0.836, Tmax = 0.904l = 1016
4593 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.0348P]
where P = (Fo2 + 2Fc2)/3
1649 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn2(C7H3NO4)2(H2O)3]V = 1679.1 (3) Å3
Mr = 494.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.1763 (13) ŵ = 1.57 mm1
b = 9.7513 (10) ÅT = 153 K
c = 13.1510 (13) Å0.39 × 0.10 × 0.06 mm
β = 96.427 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1649 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1456 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.904Rint = 0.028
4593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
1649 reflectionsΔρmin = 0.31 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.04668 (3)0.01957 (4)0.87334 (3)0.01474 (14)
O30.09871 (12)0.08881 (16)0.70408 (12)0.0177 (4)
O40.16289 (14)0.25500 (19)0.61332 (13)0.0257 (4)
O2W0.17185 (16)0.1023 (2)0.93574 (16)0.0283 (5)
O10.10025 (16)0.29078 (19)1.13305 (14)0.0326 (5)
O20.04275 (13)0.11744 (16)1.02950 (13)0.0179 (4)
O1W0.00000.1383 (2)0.75000.0195 (5)
N10.11101 (14)0.2377 (2)0.87038 (14)0.0163 (4)
C10.08209 (18)0.2351 (3)1.04755 (18)0.0197 (5)
C70.13324 (17)0.2082 (3)0.69342 (18)0.0174 (5)
C60.13422 (18)0.3006 (2)0.78526 (18)0.0186 (5)
C50.1509 (2)0.4409 (3)0.7806 (2)0.0253 (6)
H30.16710.48170.72050.030*
C20.10824 (19)0.3133 (2)0.95497 (19)0.0201 (5)
C30.1234 (2)0.4546 (3)0.9564 (2)0.0274 (6)
H50.12040.50471.01620.033*
C40.1429 (2)0.5185 (3)0.8670 (2)0.0299 (6)
H40.15060.61320.86500.036*
H2A0.217 (3)0.132 (3)0.911 (3)0.041 (10)*
H2B0.166 (3)0.141 (3)0.991 (3)0.049 (11)*
H10.039 (3)0.196 (3)0.783 (3)0.053 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0185 (2)0.0145 (2)0.0116 (2)0.00089 (14)0.00353 (14)0.00022 (14)
O30.0200 (8)0.0171 (9)0.0167 (9)0.0033 (7)0.0049 (7)0.0005 (7)
O40.0358 (11)0.0287 (10)0.0141 (9)0.0114 (8)0.0102 (8)0.0016 (8)
O2W0.0259 (10)0.0392 (12)0.0217 (11)0.0160 (9)0.0111 (9)0.0099 (9)
O10.0577 (13)0.0272 (10)0.0150 (10)0.0202 (9)0.0129 (9)0.0067 (8)
O20.0265 (9)0.0149 (8)0.0132 (8)0.0039 (7)0.0070 (7)0.0017 (7)
O1W0.0294 (14)0.0135 (12)0.0172 (13)0.0000.0091 (11)0.000
N10.0177 (10)0.0201 (11)0.0117 (10)0.0021 (8)0.0043 (8)0.0002 (8)
C10.0236 (13)0.0206 (13)0.0155 (13)0.0027 (10)0.0050 (10)0.0003 (10)
C70.0147 (11)0.0223 (13)0.0154 (13)0.0016 (9)0.0030 (10)0.0002 (10)
C60.0197 (12)0.0223 (13)0.0145 (13)0.0026 (10)0.0047 (10)0.0017 (10)
C50.0360 (15)0.0229 (14)0.0180 (14)0.0095 (11)0.0070 (11)0.0012 (11)
C20.0263 (13)0.0184 (13)0.0164 (13)0.0039 (10)0.0059 (11)0.0010 (10)
C30.0388 (16)0.0230 (14)0.0219 (14)0.0096 (12)0.0095 (12)0.0057 (11)
C40.0473 (17)0.0185 (13)0.0250 (15)0.0119 (12)0.0093 (13)0.0001 (11)
Geometric parameters (Å, º) top
Mn1—O2W2.122 (2)O2—Mn1ii2.2679 (16)
Mn1—O3i2.1738 (16)O1W—Mn1i2.2707 (17)
Mn1—O2ii2.2679 (16)O1W—H10.91 (3)
Mn1—O22.2704 (17)N1—C21.338 (3)
Mn1—O1W2.2707 (17)N1—C61.341 (3)
Mn1—N12.292 (2)C1—C21.509 (3)
Mn1—O32.4944 (16)C7—C61.506 (3)
O3—C71.263 (3)C6—C51.388 (3)
O3—Mn1i2.1738 (16)C5—C41.379 (4)
O4—C71.250 (3)C5—H30.9300
O2W—H2A0.76 (4)C2—C31.391 (3)
O2W—H2B0.83 (4)C3—C41.380 (4)
O1—C11.247 (3)C3—H50.9300
O2—C11.271 (3)C4—H40.9300
O2W—Mn1—O3i163.97 (7)Mn1ii—O2—Mn1109.15 (7)
O2W—Mn1—O2ii83.25 (8)Mn1—O1W—Mn1i94.63 (9)
O3i—Mn1—O2ii87.74 (6)Mn1—O1W—H1101 (2)
O2W—Mn1—O288.91 (7)Mn1i—O1W—H1130 (2)
O3i—Mn1—O2100.66 (6)C2—N1—C6118.1 (2)
O2ii—Mn1—O270.85 (7)C2—N1—Mn1116.91 (15)
O2W—Mn1—O1W91.91 (7)C6—N1—Mn1123.91 (16)
O3i—Mn1—O1W73.86 (6)O1—C1—O2126.5 (2)
O2ii—Mn1—O1W83.50 (5)O1—C1—C2118.0 (2)
O2—Mn1—O1W154.07 (5)O2—C1—C2115.5 (2)
O2W—Mn1—N1104.68 (8)O4—C7—O3125.5 (2)
O3i—Mn1—N190.69 (7)O4—C7—C6118.8 (2)
O2ii—Mn1—N1140.61 (6)O3—C7—C6115.7 (2)
O2—Mn1—N170.80 (6)N1—C6—C5122.7 (2)
O1W—Mn1—N1133.50 (6)N1—C6—C7114.4 (2)
O2W—Mn1—O3102.56 (7)C5—C6—C7122.8 (2)
O3i—Mn1—O379.27 (6)C4—C5—C6118.5 (2)
O2ii—Mn1—O3150.96 (6)C4—C5—H3120.8
O2—Mn1—O3136.87 (6)C6—C5—H3120.8
O1W—Mn1—O368.01 (5)N1—C2—C3122.6 (2)
N1—Mn1—O366.08 (6)N1—C2—C1115.0 (2)
C7—O3—Mn1i122.94 (15)C3—C2—C1122.3 (2)
C7—O3—Mn1119.13 (14)C4—C3—C2118.4 (2)
Mn1i—O3—Mn191.04 (6)C4—C3—H5120.8
Mn1—O2W—H2A131 (3)C2—C3—H5120.8
Mn1—O2W—H2B116 (2)C5—C4—C3119.5 (3)
H2A—O2W—H2B111 (3)C5—C4—H4120.2
C1—O2—Mn1ii130.81 (15)C3—C4—H4120.2
C1—O2—Mn1119.90 (15)
O2W—Mn1—O3—C7102.13 (17)O2W—Mn1—N1—C6104.24 (19)
O3i—Mn1—O3—C794.14 (15)O3i—Mn1—N1—C671.14 (19)
O2ii—Mn1—O3—C7159.06 (16)O2ii—Mn1—N1—C6158.42 (16)
O2—Mn1—O3—C70.0 (2)O2—Mn1—N1—C6172.2 (2)
O1W—Mn1—O3—C7170.92 (17)O1W—Mn1—N1—C63.0 (2)
N1—Mn1—O3—C71.45 (15)O3—Mn1—N1—C66.79 (17)
O2W—Mn1—O3—Mn1i128.63 (7)Mn1ii—O2—C1—O117.4 (4)
O3i—Mn1—O3—Mn1i35.10 (8)Mn1—O2—C1—O1167.5 (2)
O2ii—Mn1—O3—Mn1i29.82 (14)Mn1ii—O2—C1—C2162.32 (16)
O2—Mn1—O3—Mn1i129.28 (7)Mn1—O2—C1—C212.9 (3)
O1W—Mn1—O3—Mn1i41.68 (5)Mn1i—O3—C7—O468.1 (3)
N1—Mn1—O3—Mn1i130.69 (8)Mn1—O3—C7—O4179.19 (18)
O2W—Mn1—O2—C1100.62 (18)Mn1i—O3—C7—C6109.6 (2)
O3i—Mn1—O2—C192.33 (18)Mn1—O3—C7—C63.1 (3)
O2ii—Mn1—O2—C1176.1 (2)C2—N1—C6—C52.9 (4)
O1W—Mn1—O2—C1167.26 (16)Mn1—N1—C6—C5165.08 (19)
N1—Mn1—O2—C15.35 (17)C2—N1—C6—C7178.7 (2)
O3—Mn1—O2—C16.7 (2)Mn1—N1—C6—C710.7 (3)
O2W—Mn1—O2—Mn1ii83.24 (9)O4—C7—C6—N1173.6 (2)
O3i—Mn1—O2—Mn1ii83.81 (8)O3—C7—C6—N18.5 (3)
O2ii—Mn1—O2—Mn1ii0.0O4—C7—C6—C510.6 (4)
O1W—Mn1—O2—Mn1ii8.89 (17)O3—C7—C6—C5167.3 (2)
N1—Mn1—O2—Mn1ii170.80 (9)N1—C6—C5—C40.2 (4)
O3—Mn1—O2—Mn1ii169.44 (6)C7—C6—C5—C4175.3 (2)
O2W—Mn1—O1W—Mn1i142.47 (6)C6—N1—C2—C33.3 (4)
O3i—Mn1—O1W—Mn1i45.02 (5)Mn1—N1—C2—C3165.5 (2)
O2ii—Mn1—O1W—Mn1i134.55 (5)C6—N1—C2—C1179.7 (2)
O2—Mn1—O1W—Mn1i126.10 (13)Mn1—N1—C2—C111.5 (3)
N1—Mn1—O1W—Mn1i30.06 (7)O1—C1—C2—N1164.3 (2)
O3—Mn1—O1W—Mn1i39.69 (4)O2—C1—C2—N116.0 (3)
O2W—Mn1—N1—C287.65 (18)O1—C1—C2—C318.7 (4)
O3i—Mn1—N1—C296.97 (17)O2—C1—C2—C3161.0 (2)
O2ii—Mn1—N1—C29.7 (2)N1—C2—C3—C40.6 (4)
O2—Mn1—N1—C24.08 (17)C1—C2—C3—C4177.4 (3)
O1W—Mn1—N1—C2165.13 (15)C6—C5—C4—C33.0 (4)
O3—Mn1—N1—C2174.90 (19)C2—C3—C4—C52.6 (4)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O4iii0.76 (4)1.99 (4)2.722 (3)162 (3)
O2W—H2B···O4iv0.83 (4)1.96 (4)2.783 (3)171 (3)
O1W—H1···O1ii0.91 (3)1.71 (3)2.603 (2)169 (3)
Symmetry codes: (ii) x, y, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C7H3NO4)2(H2O)3]
Mr494.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)13.1763 (13), 9.7513 (10), 13.1510 (13)
β (°) 96.427 (2)
V3)1679.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.39 × 0.10 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.836, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
4593, 1649, 1456
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.05
No. of reflections1649
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Siemens, 1995), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker 1998).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds