Download citation
Download citation
link to html
The title compound, C10H14N4S4, which exists as the 2E,3E isomer, does not contain a center of inversion; the conformations of the two halves are different. The conformation of the 1,3-dithiol­ane ring on one side of the mol­ecule is in the half-chair form but that on the other side is in the envelope form, in which the C atoms are disordered over two positions with relative occupancies of 0.635 (19) and 0.365 (19). There are C—H...N intra­molecular hydrogen bonds, and C—H...N and C—H...S inter­molecular hydrogen bonds, which stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053639/bv2077sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053639/bv2077Isup2.hkl
Contains datablock I

CCDC reference: 672782

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.041
  • wR factor = 0.117
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.749 0.957 Tmin(prime) and Tmax expected: 0.843 0.938 RR(prime) = 0.871 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.87 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT301_ALERT_3_C Main Residue Disorder ......................... 10.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 20.00 Deg. C9' -S3 -C9 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 22.80 Deg. C10' -S4 -C10 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The Schiff's bases and carbonyl derivatives of 2-hydrazono-1, 3-dithiolane have been abstracted for their coordination chemistry and biological activity (Beghidja et al., 2006; Wang et al., 1994, Gou et al., 2004; Xu et al., 2005). As ongoing research (Liu et al., 2007) we report herein the synthesis and structure of a novel bi-Schiff's base, derived from condensation of butanedione and 2-hydrazono-1, 3-dithiolane.

The molecule of the title compound exists as the most stable configuration of (E, E)-isomer (Fig.1). In the molecule there are two intramolecular C—H···N hydrogen-bonds forming two rings with graph sets S(5) (Bernstein et al., 1995) and directly influencing the coplanarity of the atoms involved (Fig. 1, Table 2). Due to conjugation and intramolecular hydrogen-bonds, the atoms C3, N1, N2, C4, C5, C6, C7, N3, N4 and C8 are coplanar. The dihedral angles to the S1- C3 - S2 and S1- C3 - S2 planes are 17.02 (2) and 6.62 (18)°, respectively.

In the two 1,3-dithiolane rings of the molecule, the conformation of the ring defined by S1, C3, S2, C1 and C2 is in the half-chair form (Cremer & Pople, 1975; Xu et al., 2005) and atom C1, C2 derivates by -0.292 (4) Å, 0.353 (4) Å from this plane. In the other ring C9 and C10 are disordered over two positions with relative occupancies of 0.635 (19) and 0.365 (19) for the major and minor components. The ring for the major componenet is also the half-chair form, but that for the minor component is in the envelope form similar to that for (3E)-3-(1,3-dithiolan-2-ylidenehydrazono)butane (Liu et al., 2007). This is shown by the fact that atoms C9, C10, C9' and C10' deviate by -0.37 (2), 0.33 (2), 0.236 (10) Å and -0.376 (11) Å from the ring plane. The molecule does not posses a center of inversion and the the solid crystal is stablized by C—H···N intramolecular hydrogen-bonds, C—H···N and C—H···S intermolecular hydrogen-bonds (Table 1).

Related literature top

For related literature, see: Beghidja et al. (2006); Bernstein et al. (1995); Cremer & Pople (1975); Gou et al. (2004); Liu et al. (2007); Wang et al. (1994); Xu et al. (2005).

Experimental top

2-Hydrazono-1, 3-dithiolane (38.5 mmol) and butanedione (19.0 mmol) in EtOH (35 cm3) were refluxed for 4 h. Then solvent was removed on a vacuum rotary evaporator·Crude product (2.85 g, 90% yield) was recrystallized from CH2Cl2–EtOH to give crystals of suitable for single-crystal X-ray diffraction (yield 82%, m.p. 474 – 476 K). 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 2.31 (3H, s, CH3), 3.49 (S, 4H, CH2CH2). 13C NMR (600 MHz, CDCl3, δ, p.p.m.): 177.017 (N—NC), 162.956 (CS2), 36.454, 34.858 (CH2CH2), 11.605 (CH3).

Refinement top

The C9 and C10 atoms were refined as disordered with a refined occupancy of 68 (2)% for the major component. The anisotropic dispalcement parameters of C9, C9', C10 and C10' were constrained to be equal. After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C —H distances of 0.96 (methyl) or 0.97 Å (CH2), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Computing details top

Data collection: SMART (Bruker,1997); cell refinement: SAINT (Bruker,1997); data reduction: SAINT (Bruker,1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker,1997).

Figures top
[Figure 1] Fig. 1. The molecular of (I) structure of the title compound, showing 40% probability ellipsoids. The C — H ··· N intramolecular hydrogen bond is shown dashed.
(2E,3E)-2,3-Bis(1,3-dithiolan-2-ylidenehydrazono)butane top
Crystal data top
C10H14N4S4F(000) = 664
Mr = 318.49Dx = 1.460 Mg m3
Monoclinic, P21/nMelting point: 392 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.0210 (17) ÅCell parameters from 2725 reflections
b = 17.939 (4) Åθ = 2.8–25.8°
c = 10.227 (2) ŵ = 0.64 mm1
β = 100.108 (3)°T = 294 K
V = 1448.6 (5) Å3Block, light yellow
Z = 40.26 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2963 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997; Blessing, 1995)
h = 108
Tmin = 0.749, Tmax = 0.957k = 1122
8087 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.5471P]
where P = (Fo2 + 2Fc2)/3
2963 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H14N4S4V = 1448.6 (5) Å3
Mr = 318.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0210 (17) ŵ = 0.64 mm1
b = 17.939 (4) ÅT = 294 K
c = 10.227 (2) Å0.26 × 0.20 × 0.10 mm
β = 100.108 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2963 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997; Blessing, 1995)
2041 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.957Rint = 0.030
8087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
2963 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.22062 (12)0.49090 (4)0.59864 (7)0.0650 (3)
S20.35239 (11)0.64030 (4)0.68331 (7)0.0618 (2)
S30.15131 (10)0.32739 (4)1.38926 (7)0.0565 (2)
S40.00920 (10)0.18337 (4)1.29964 (7)0.0551 (2)
N10.2561 (3)0.54408 (12)0.8478 (2)0.0537 (6)
N20.1831 (3)0.47375 (12)0.8615 (2)0.0483 (6)
N30.1317 (3)0.35516 (11)1.1187 (2)0.0466 (5)
N40.0610 (3)0.28473 (12)1.1336 (2)0.0502 (6)
C10.2486 (5)0.5562 (2)0.4687 (3)0.0820 (11)
H1A0.28070.52950.39440.098*
H1B0.14310.58210.43730.098*
C20.3846 (5)0.61137 (19)0.5233 (3)0.0748 (10)
H2A0.37940.65410.46460.090*
H2B0.49520.58850.52960.090*
C30.2716 (3)0.55535 (14)0.7272 (2)0.0416 (6)
C40.1932 (3)0.45185 (14)0.9825 (2)0.0406 (6)
C50.2773 (4)0.49329 (16)1.1025 (3)0.0584 (8)
H5A0.30030.54341.07810.088*
H5B0.38160.46901.13930.088*
H5C0.20400.49411.16730.088*
C60.1144 (3)0.37859 (13)0.9983 (2)0.0397 (6)
C70.0266 (4)0.33730 (15)0.8782 (2)0.0527 (7)
H7A0.00310.28820.90370.079*
H7B0.10080.33350.81440.079*
H7C0.07420.36370.83960.079*
C80.0689 (3)0.26931 (13)1.2569 (2)0.0401 (6)
C90.069 (3)0.2724 (7)1.5139 (18)0.061 (4)0.365 (19)
H9A0.13650.28091.60100.074*0.365 (19)
H9B0.04710.28671.51660.074*0.365 (19)
C100.076 (3)0.1905 (7)1.4760 (11)0.058 (4)0.365 (19)
H10A0.00990.16061.52700.069*0.365 (19)
H10B0.19250.17281.49390.069*0.365 (19)
C9'0.1410 (12)0.2578 (7)1.5165 (10)0.062 (3)0.635 (19)
H9'A0.24560.22941.53310.075*0.635 (19)
H9'B0.12670.28201.59850.075*0.635 (19)
C10'0.0065 (14)0.2060 (6)1.4707 (8)0.062 (2)0.635 (19)
H10C0.11180.23021.48060.075*0.635 (19)
H10D0.00550.16101.52390.075*0.635 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1024 (7)0.0511 (5)0.0419 (4)0.0163 (4)0.0141 (4)0.0022 (3)
S20.0877 (6)0.0469 (4)0.0525 (4)0.0160 (4)0.0171 (4)0.0085 (3)
S30.0695 (5)0.0580 (5)0.0412 (4)0.0175 (4)0.0074 (3)0.0053 (3)
S40.0760 (5)0.0417 (4)0.0467 (4)0.0098 (3)0.0081 (3)0.0084 (3)
N10.0805 (17)0.0404 (12)0.0429 (12)0.0119 (11)0.0178 (12)0.0026 (10)
N20.0656 (15)0.0409 (12)0.0404 (11)0.0083 (10)0.0145 (11)0.0023 (9)
N30.0628 (15)0.0406 (12)0.0379 (11)0.0070 (10)0.0129 (10)0.0023 (9)
N40.0752 (16)0.0385 (12)0.0371 (12)0.0076 (11)0.0101 (11)0.0013 (9)
C10.123 (3)0.087 (3)0.0379 (16)0.018 (2)0.0186 (18)0.0094 (16)
C20.106 (3)0.069 (2)0.0579 (19)0.009 (2)0.0368 (19)0.0114 (16)
C30.0467 (15)0.0375 (14)0.0408 (13)0.0007 (11)0.0080 (11)0.0052 (11)
C40.0468 (15)0.0397 (14)0.0372 (13)0.0042 (11)0.0127 (11)0.0007 (10)
C50.080 (2)0.0497 (17)0.0447 (15)0.0114 (15)0.0072 (14)0.0007 (12)
C60.0467 (15)0.0378 (13)0.0367 (13)0.0024 (11)0.0127 (11)0.0005 (10)
C70.072 (2)0.0464 (15)0.0402 (14)0.0066 (14)0.0111 (13)0.0022 (12)
C80.0454 (15)0.0375 (14)0.0373 (13)0.0003 (11)0.0068 (11)0.0012 (10)
C90.080 (12)0.068 (7)0.036 (5)0.019 (8)0.010 (8)0.012 (4)
C100.071 (10)0.073 (7)0.029 (4)0.002 (7)0.007 (6)0.016 (4)
C9'0.059 (5)0.090 (7)0.035 (3)0.008 (4)0.001 (4)0.007 (4)
C10'0.062 (5)0.074 (5)0.050 (3)0.009 (4)0.012 (4)0.018 (3)
Geometric parameters (Å, º) top
S1—C31.744 (3)C2—H2B0.9700
S1—C11.814 (3)C4—C61.480 (3)
S2—C31.745 (3)C4—C51.491 (4)
S2—C21.778 (3)C5—H5A0.9600
S3—C81.743 (2)C5—H5B0.9600
S3—C9'1.816 (11)C5—H5C0.9600
S3—C91.825 (19)C6—C71.500 (4)
S4—C81.748 (2)C7—H7A0.9600
S4—C10'1.792 (8)C7—H7B0.9600
S4—C101.819 (12)C7—H7C0.9600
N1—C31.278 (3)C9—C101.524 (9)
N1—N21.408 (3)C9—H9A0.9700
N2—C41.287 (3)C9—H9B0.9700
N3—C61.286 (3)C10—H10A0.9700
N3—N41.404 (3)C10—H10B0.9700
N4—C81.282 (3)C9'—C10'1.512 (7)
C1—C21.506 (5)C9'—H9'A0.9700
C1—H1A0.9700C9'—H9'B0.9700
C1—H1B0.9700C10'—H10C0.9700
C2—H2A0.9700C10'—H10D0.9700
C3—S1—C194.67 (14)N3—C6—C4114.7 (2)
C3—S2—C295.86 (14)N3—C6—C7125.4 (2)
C8—S3—C9'94.9 (3)C4—C6—C7119.9 (2)
C8—S3—C994.8 (6)C6—C7—H7A109.5
C9'—S3—C920.0 (4)C6—C7—H7B109.5
C8—S4—C10'95.8 (3)H7A—C7—H7B109.5
C8—S4—C1095.6 (4)C6—C7—H7C109.5
C10'—S4—C1022.8 (4)H7A—C7—H7C109.5
C3—N1—N2110.5 (2)H7B—C7—H7C109.5
C4—N2—N1114.3 (2)N4—C8—S3125.53 (19)
C6—N3—N4114.9 (2)N4—C8—S4118.57 (19)
C8—N4—N3110.5 (2)S3—C8—S4115.90 (14)
C2—C1—S1109.1 (2)C10—C9—S3108.0 (11)
C2—C1—H1A109.9C10—C9—H9A110.1
S1—C1—H1A109.9S3—C9—H9A110.1
C2—C1—H1B109.9C10—C9—H9B110.1
S1—C1—H1B109.9S3—C9—H9B110.1
H1A—C1—H1B108.3H9A—C9—H9B108.4
C1—C2—S2108.7 (2)C9—C10—S4107.1 (11)
C1—C2—H2A110.0C9—C10—H10A110.3
S2—C2—H2A110.0S4—C10—H10A110.3
C1—C2—H2B110.0C9—C10—H10B110.3
S2—C2—H2B110.0S4—C10—H10B110.3
H2A—C2—H2B108.3H10A—C10—H10B108.5
N1—C3—S1125.0 (2)C10'—C9'—S3109.4 (7)
N1—C3—S2119.3 (2)C10'—C9'—H9'A109.8
S1—C3—S2115.71 (14)S3—C9'—H9'A109.8
N2—C4—C6114.8 (2)C10'—C9'—H9'B109.8
N2—C4—C5125.6 (2)S3—C9'—H9'B109.8
C6—C4—C5119.6 (2)H9'A—C9'—H9'B108.2
C4—C5—H5A109.5C9'—C10'—S4108.4 (7)
C4—C5—H5B109.5C9'—C10'—H10C110.0
H5A—C5—H5B109.5S4—C10'—H10C110.0
C4—C5—H5C109.5C9'—C10'—H10D110.0
H5A—C5—H5C109.5S4—C10'—H10D110.0
H5B—C5—H5C109.5H10C—C10'—H10D108.4
C3—N1—N2—C4167.0 (2)N3—N4—C8—S4179.09 (17)
C6—N3—N4—C8173.4 (2)C9'—S3—C8—N4171.9 (4)
C3—S1—C1—C231.8 (3)C9—S3—C8—N4168.1 (6)
S1—C1—C2—S243.7 (3)C9'—S3—C8—S48.3 (4)
C3—S2—C2—C133.1 (3)C9—S3—C8—S411.7 (6)
N2—N1—C3—S13.2 (3)C10'—S4—C8—N4167.6 (5)
N2—N1—C3—S2177.76 (18)C10—S4—C8—N4169.5 (7)
C1—S1—C3—N1171.7 (3)C10'—S4—C8—S312.2 (4)
C1—S1—C3—S29.3 (2)C10—S4—C8—S310.7 (7)
C2—S2—C3—N1167.6 (3)C8—S3—C9—C1035.3 (18)
C2—S2—C3—S111.5 (2)C9'—S3—C9—C1055.8 (16)
N1—N2—C4—C6179.0 (2)S3—C9—C10—S446 (2)
N1—N2—C4—C51.7 (4)C8—S4—C10—C934.5 (18)
N4—N3—C6—C4178.3 (2)C10'—S4—C10—C957.1 (17)
N4—N3—C6—C70.3 (4)C8—S3—C9'—C10'31.0 (11)
N2—C4—C6—N3176.8 (2)C9—S3—C9'—C10'59.5 (19)
C5—C4—C6—N32.5 (4)S3—C9'—C10'—S443.1 (14)
N2—C4—C6—C71.9 (4)C8—S4—C10'—C9'33.1 (11)
C5—C4—C6—C7178.8 (2)C10—S4—C10'—C9'57.6 (14)
N3—N4—C8—S31.2 (3)

Experimental details

Crystal data
Chemical formulaC10H14N4S4
Mr318.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.0210 (17), 17.939 (4), 10.227 (2)
β (°) 100.108 (3)
V3)1448.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.26 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997; Blessing, 1995)
Tmin, Tmax0.749, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
8087, 2963, 2041
Rint0.030
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.02
No. of reflections2963
No. of parameters184
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: SMART (Bruker,1997), SAINT (Bruker,1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker,1997).

Table 1 top
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
C5—H5A···N10.962.322.737 (4)105
C7—H7A···N40.962.322.745 (3)106
C9'—H9'A···N4i0.972.573.457 (10)152
C9'—H9'A···S4i0.972.9673.890 (5)160
C10—H10A···N1ii0.972.5933.641 (5)163
C2—H2Aiii···N40.972.6283.563 (5)162
Symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 - x, 1/2 + y, 1/2 – z; (iii) 1/2 - x, - 1/2 + y, - 1/2 - z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds