Download citation
Download citation
link to html
The title compound, [Ni(C7H3NO4)(H2O)4]·H2O, synthesized by reaction of nickel(II) nitrate hexahydrate with pyridine-2,5-dicarboxylic acid and piperazine in water. It has essentially the same structure with the analogous nickel(II) dihydrate complex [Shiu, Chen, Liao & Wang (2003). Acta Cryst. E59, m1072–m1074]. The compound contains a six-coordinate NiII ion, which is bonded to the N and an O atom of the carboxyl­ate group in the 2-position of the pyridine-2,5-dicarboxyl­ate ligand, and four water O atoms. The Ni^II^ atom has a distorted octahedral coordination environment. Inter­molecular hydrogen-bonding inter­actions are present, linking the nickel(II) complex and water mol­ecules in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053627/bx2109sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053627/bx2109Isup2.hkl
Contains datablock I

CCDC reference: 672601

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • R factor = 0.024
  • wR factor = 0.067
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The data collection temperature in our work was 100 (2) K, whereas, the previous work was conducted at the room temperature.

The N1 and O1 atoms of the (py-2,5-dc)2– group, O1W and O2W occupy the equatorial positions, while O3W and O4W atoms accupy axial positions. The O3W—Ni1—O4W, O1—Ni1—O2W and N1- Ni1—O1W angles which equal to 174.15 (4)°, 172.73 (4)° and 171.48 (5)°, respectively, deviate from linearity. Bond distances and bond angles show the coordination around NiII is distorted octahedral. There are a large number of O—H···O and C—H···O hydrogen bonds with distances ranging from 2.6658 (17) Å to 2.8233 (15) Å between [Ni(py-2,5-dc)(H2O)4] and water molecules Considerable ππ staking 3.76 Å (1 - x, 2 - y, 2 - z) and C—H···π 3.247 Å interactions between two aromatic rings of py-2,5-dc are observed. Hydrogen bonds and ππ stacking and van der Waals forces result in the formation of a supramolecular structure.

Related literature top

For related literature, see: Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghasemikhah et al. (2006); Aghabozorg, Nakhjavan et al. (2006); Aghabozorg, Attar Gharamaleki et al. (2007); Aghabozorg, Ghadermazi et al. (2007); Aghabozorg, Ghasemikhah et al. (2007); Sheshmani et al. (2007).

Experimental top

The proton transfer compound [(pipzH2)(py-2,5-dc)].2H2O, was prepared by the reaction of pyridine-2,5-dicarboxylic acid, py-2,5-dcH2, with piperazine, (pipz). The reaction between Ni(NO3)2.6H2O (145 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound, (pipzH2)(py-2,5-dc) (253 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried by the slow evaporation of the solvent at room temperature.

Refinement top

The hydrogen atoms of OH2 molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), where U(Ci) the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1]
The structure of (I), showing the atom-numbering scheme and displacement. Ellipsoids are at the 50% probability level.

Unit cell packing of the title compound, (I). Hydrogen bonds are shown as dashed lines.
Tetraaqua(pyridine-2,5-dicarboxylato-κ2N,O2)nickel(II) monohydrate top
Crystal data top
[Ni(C7H3NO4)(H2O)4]·H2OZ = 2
Mr = 313.89F(000) = 324
Triclinic, P1Dx = 1.882 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6633 (3) ÅCell parameters from 5275 reflections
b = 8.3996 (3) Åθ = 2.6–34.8°
c = 10.7882 (4) ŵ = 1.80 mm1
α = 84.7541 (9)°T = 100 K
β = 83.0010 (8)°Prism, blue
γ = 67.6991 (8)°0.25 × 0.20 × 0.10 mm
V = 553.81 (4) Å3
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2950 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 99
Tmin = 0.662, Tmax = 0.841k = 1111
9105 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1995P]
where P = (Fo2 + 2Fc2)/3
2950 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni(C7H3NO4)(H2O)4]·H2Oγ = 67.6991 (8)°
Mr = 313.89V = 553.81 (4) Å3
Triclinic, P1Z = 2
a = 6.6633 (3) ÅMo Kα radiation
b = 8.3996 (3) ŵ = 1.80 mm1
c = 10.7882 (4) ÅT = 100 K
α = 84.7541 (9)°0.25 × 0.20 × 0.10 mm
β = 83.0010 (8)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2950 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2710 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.841Rint = 0.024
9105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
2950 reflectionsΔρmin = 0.48 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.77628 (3)0.75902 (2)0.630569 (16)0.00700 (7)
O1W0.77995 (19)0.68571 (14)0.45564 (10)0.0126 (2)
H1WB0.77870.74430.38700.015*
H1WA0.80330.58420.43560.015*
O2W0.78206 (18)0.52659 (13)0.72019 (10)0.0098 (2)
H2WA0.77250.44470.68350.012*
H2WB0.89820.47800.75630.012*
O3W1.11699 (17)0.65681 (13)0.60822 (10)0.0103 (2)
H3WA1.17170.69180.54110.012*
H3WB1.18250.66080.67000.012*
O4W0.44345 (18)0.83688 (14)0.64479 (10)0.0105 (2)
H4WA0.38860.88220.57700.013*
H4WB0.37770.91360.69750.013*
O10.75524 (18)1.00066 (13)0.56414 (10)0.0098 (2)
O20.73095 (19)1.25596 (13)0.62085 (10)0.0117 (2)
N10.7735 (2)0.86760 (16)0.79577 (11)0.0081 (2)
O30.78193 (19)0.87359 (14)1.23625 (10)0.0132 (2)
O40.88292 (18)0.62574 (14)1.14249 (10)0.0116 (2)
C10.7470 (2)1.03522 (18)0.77991 (13)0.0082 (3)
C20.7297 (2)1.13475 (18)0.87916 (13)0.0088 (3)
H2A0.70811.25320.86540.011*
C30.7443 (2)1.05790 (19)0.99975 (14)0.0092 (3)
H3A0.72991.12361.06980.011*
C40.7805 (2)0.88336 (18)1.01541 (13)0.0075 (3)
C50.7925 (2)0.79291 (18)0.91115 (13)0.0082 (3)
H5A0.81490.67410.92220.010*
C60.7433 (2)1.10494 (19)0.64500 (14)0.0089 (3)
C70.8158 (2)0.78780 (19)1.14149 (13)0.0086 (3)
O5W0.3102 (2)0.61554 (15)0.83049 (11)0.0174 (2)
H5WB0.44760.58430.81530.021*
H5WA0.28590.52470.85430.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00988 (11)0.00577 (10)0.00542 (10)0.00289 (7)0.00096 (7)0.00040 (6)
O1W0.0224 (6)0.0090 (5)0.0065 (5)0.0058 (4)0.0019 (4)0.0007 (4)
O2W0.0135 (5)0.0069 (5)0.0098 (5)0.0041 (4)0.0031 (4)0.0007 (4)
O3W0.0119 (5)0.0114 (5)0.0081 (5)0.0052 (4)0.0008 (4)0.0004 (4)
O4W0.0117 (5)0.0104 (5)0.0083 (5)0.0026 (4)0.0014 (4)0.0012 (4)
O10.0151 (5)0.0085 (5)0.0069 (5)0.0054 (4)0.0020 (4)0.0006 (4)
O20.0186 (6)0.0090 (5)0.0089 (5)0.0068 (4)0.0019 (4)0.0004 (4)
N10.0095 (6)0.0078 (5)0.0074 (5)0.0036 (5)0.0007 (4)0.0006 (4)
O30.0201 (6)0.0107 (5)0.0067 (5)0.0031 (4)0.0015 (4)0.0014 (4)
O40.0161 (5)0.0086 (5)0.0104 (5)0.0045 (4)0.0034 (4)0.0012 (4)
C10.0085 (6)0.0088 (6)0.0074 (6)0.0035 (5)0.0013 (5)0.0010 (5)
C20.0096 (7)0.0072 (6)0.0096 (6)0.0030 (5)0.0014 (5)0.0004 (5)
C30.0089 (6)0.0108 (7)0.0084 (6)0.0040 (5)0.0006 (5)0.0020 (5)
C40.0062 (6)0.0091 (6)0.0064 (6)0.0018 (5)0.0006 (5)0.0000 (5)
C50.0093 (6)0.0076 (6)0.0076 (6)0.0031 (5)0.0011 (5)0.0001 (5)
C60.0092 (7)0.0094 (6)0.0081 (6)0.0035 (5)0.0018 (5)0.0012 (5)
C70.0070 (6)0.0106 (6)0.0080 (6)0.0034 (5)0.0003 (5)0.0002 (5)
O5W0.0168 (6)0.0141 (5)0.0223 (6)0.0078 (5)0.0001 (5)0.0007 (5)
Geometric parameters (Å, º) top
Ni1—O1W2.0325 (11)N1—C51.3395 (18)
Ni1—O12.0483 (10)N1—C11.3481 (18)
Ni1—O4W2.0505 (11)O3—C71.2532 (18)
Ni1—N12.0700 (12)O4—C71.2608 (18)
Ni1—O2W2.0867 (10)C1—C21.385 (2)
Ni1—O3W2.0915 (11)C1—C61.518 (2)
O1W—H1WB0.8501C2—C31.396 (2)
O1W—H1WA0.8500C2—H2A0.9500
O2W—H2WA0.8500C3—C41.390 (2)
O2W—H2WB0.8500C3—H3A0.9500
O3W—H3WA0.8500C4—C51.3917 (19)
O3W—H3WB0.8500C4—C71.5116 (19)
O4W—H4WA0.8500C5—H5A0.9500
O4W—H4WB0.8500O5W—H5WB0.8500
O1—C61.2668 (18)O5W—H5WA0.8501
O2—C61.2446 (18)
O1W—Ni1—O191.77 (4)C6—O1—Ni1116.37 (9)
O1W—Ni1—O4W87.70 (4)C5—N1—C1118.74 (12)
O1—Ni1—O4W90.52 (4)C5—N1—Ni1128.30 (10)
O1W—Ni1—N1171.48 (5)C1—N1—Ni1112.96 (9)
O1—Ni1—N179.73 (4)N1—C1—C2122.40 (13)
O4W—Ni1—N193.03 (5)N1—C1—C6114.88 (12)
O1W—Ni1—O2W95.03 (4)C2—C1—C6122.70 (13)
O1—Ni1—O2W172.73 (4)C1—C2—C3118.82 (13)
O4W—Ni1—O2W87.21 (4)C1—C2—H2A120.6
N1—Ni1—O2W93.48 (4)C3—C2—H2A120.6
O1W—Ni1—O3W88.12 (4)C4—C3—C2118.71 (13)
O1—Ni1—O3W93.70 (4)C4—C3—H3A120.6
O4W—Ni1—O3W174.15 (4)C2—C3—H3A120.6
N1—Ni1—O3W91.71 (5)C3—C4—C5118.96 (13)
O2W—Ni1—O3W89.09 (4)C3—C4—C7121.86 (13)
Ni1—O1W—H1WB127.7C5—C4—C7119.14 (12)
Ni1—O1W—H1WA126.0N1—C5—C4122.29 (13)
H1WB—O1W—H1WA105.7N1—C5—H5A118.9
Ni1—O2W—H2WA124.1C4—C5—H5A118.9
Ni1—O2W—H2WB110.2O2—C6—O1124.76 (13)
H2WA—O2W—H2WB103.2O2—C6—C1119.37 (13)
Ni1—O3W—H3WA114.0O1—C6—C1115.87 (12)
Ni1—O3W—H3WB117.0O3—C7—O4124.86 (13)
H3WA—O3W—H3WB110.6O3—C7—C4118.32 (13)
Ni1—O4W—H4WA113.3O4—C7—C4116.80 (13)
Ni1—O4W—H4WB114.0H5WB—O5W—H5WA106.3
H4WA—O4W—H4WB103.8
O1W—Ni1—O1—C6178.63 (11)C1—C2—C3—C41.4 (2)
O4W—Ni1—O1—C690.91 (11)C2—C3—C4—C52.4 (2)
N1—Ni1—O1—C62.07 (10)C2—C3—C4—C7175.16 (13)
O3W—Ni1—O1—C693.15 (11)C1—N1—C5—C41.6 (2)
O1—Ni1—N1—C5176.85 (13)Ni1—N1—C5—C4177.79 (10)
O4W—Ni1—N1—C593.17 (13)C3—C4—C5—N11.0 (2)
O2W—Ni1—N1—C55.79 (13)C7—C4—C5—N1176.67 (13)
O3W—Ni1—N1—C583.40 (13)Ni1—O1—C6—O2179.57 (12)
O1—Ni1—N1—C13.74 (10)Ni1—O1—C6—C10.15 (16)
O4W—Ni1—N1—C186.23 (10)N1—C1—C6—O2176.29 (13)
O2W—Ni1—N1—C1173.62 (10)C2—C1—C6—O22.2 (2)
O3W—Ni1—N1—C197.19 (10)N1—C1—C6—O13.17 (19)
C5—N1—C1—C22.7 (2)C2—C1—C6—O1178.29 (13)
Ni1—N1—C1—C2176.73 (11)C3—C4—C7—O39.8 (2)
C5—N1—C1—C6175.80 (13)C5—C4—C7—O3172.58 (14)
Ni1—N1—C1—C64.73 (16)C3—C4—C7—O4168.48 (14)
N1—C1—C2—C31.3 (2)C5—C4—C7—O49.1 (2)
C6—C1—C2—C3177.16 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3i0.851.872.7235 (15)179
O1W—H1WA···O3Wii0.851.982.8233 (15)175
O2W—H2WA···O2iii0.851.902.7484 (16)173
O2W—H2WB···O4iv0.851.822.6658 (17)170
O3W—H3WA···O2v0.851.862.7005 (16)169
O3W—H3WB···O5Wvi0.851.962.7909 (17)164
O4W—H4WA···O1vii0.851.892.7366 (16)174
O4W—H4WB···O3viii0.851.862.6732 (15)161
O5W—H5WB···O2W0.852.233.0541 (19)164
O5W—H5WA···O4ix0.851.982.7619 (18)152
C3—H3A···O5Wx0.952.443.3182 (19)154
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+2; (v) x+2, y+2, z+1; (vi) x+1, y, z; (vii) x+1, y+2, z+1; (viii) x+1, y+2, z+2; (ix) x+1, y+1, z+2; (x) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(H2O)4]·H2O
Mr313.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6633 (3), 8.3996 (3), 10.7882 (4)
α, β, γ (°)84.7541 (9), 83.0010 (8), 67.6991 (8)
V3)553.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.662, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
9105, 2950, 2710
Rint0.024
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.05
No. of reflections2950
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.48

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3i0.851.872.7235 (15)179
O1W—H1WA···O3Wii0.851.982.8233 (15)175
O2W—H2WA···O2iii0.851.902.7484 (16)173
O2W—H2WB···O4iv0.851.822.6658 (17)170
O3W—H3WA···O2v0.851.862.7005 (16)169
O3W—H3WB···O5Wvi0.851.962.7909 (17)164
O4W—H4WA···O1vii0.851.892.7366 (16)174
O4W—H4WB···O3viii0.851.862.6732 (15)161
O5W—H5WB···O2W0.852.233.0541 (19)164
O5W—H5WA···O4ix0.851.982.7619 (18)152
C3—H3A···O5Wx0.952.443.3182 (19)154
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+2; (v) x+2, y+2, z+1; (vi) x+1, y, z; (vii) x+1, y+2, z+1; (viii) x+1, y+2, z+2; (ix) x+1, y+1, z+2; (x) x+2, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds