Download citation
Download citation
link to html
The title compound, C14H15ClN4O2+·C2O42−, was obtained as a 1:1 binary ionic compound. Two cations and two anions are connected via ionic N—H...O hydrogen bonds to form an annulus with inter­nal dimensions of about 8.5 × 9.5 Å, and these units are connected through O—H...O hydrogen bonds to form a two-dimensional porous layer. Weak C—H...π and C—Cl...π [Cl...centroid = 3.575 (2) and 3.598 (2) Å] inter­actions, together with strong π–π stacking inter­actions [centroid-to-centroid distance = 3.429 (3) Å], contribute to the stability of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704809X/cf2146sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704809X/cf2146Isup2.hkl
Contains datablock I

CCDC reference: 672793

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.069
  • wR factor = 0.201
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C WEIGH01_ALERT_1_C Extra text has been found in the _refine_ls_weighting_scheme field. This should be in the _refine_ls_weighting_details field. Weighting scheme given as calc w=1/[\s^2^(Fo^2^)+(0.1334P)^2^] where Weighting scheme identified as calc PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.35 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C15 - C16 ... 1.56 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C14 .. 3.00 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C14 H15 Cl N4 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C2 O4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The construction of organic crystals based on the hydrogen-bond interactions of organic ligands and various hydrogen bonding donors has been rapidly developed because of their fascinating structural diversity and potential applications for functional materials (MacGillivray & Atwood, 1997; Corna et al., 2004). In particular, intermolecular hydrogen bonds have been proven to be ideal and efficient tools in the design and construction of organic crystals because of their strength and directional properties (Aakeröy & Seddon, 1993). Dicarboxylic acids which can form strong and directional hydrogen bonds are frequently chosen as building blocks for crystal engineering, and a variety of cocrystals have been synthesized by assembling dicarboxylic acids and organic ligands bearing N-donors, such as pyridine-based ligands (Bhogala, 2003; Sarkar & Biradha, 2006). Imidazoles, which are also to N-donor compounds, have attracted attentions in the construction of some metal–organic frameworks in recent years (Dobrzanska et al., 2006; Zou et al., 2006; Wang et al., 2006), but only a few reports describing organic crystals composed of dicarboxylic acids and diimidazole compounds have appeared in the literature to date (Aakeröy et al., 2006; Van Roey et al., 1991; Wang et al., 2007). In further development of such interesting hydrogen-bonding supramolecular systems and as a continuation of our research in this area, we report here the crystal structure of an imidazolium oxalate salt, viz. the title compound, (I).

As depicted in Figure 1, the carboxyl protons H2N and H4N of oxalic acid have completely transferred to N2 and N4 of BICP, resulting in the formation of an imidazolium oxalate salt. Two cations and two anions form an annulus with internal dimensions of about 8.5 Å × 9.5 Å via N—H···O hydrogen bonds as illustrated in Figure 2 and Table 1. These units are further connected by O—H···O hydrogen bonds involving the hydroxy groups of the cation and the carbonyl group of oxalate to result in a 2-D porous layer as shown in Figure 3.

A network of intermolecular ππ and C—H···π interactions, as well as C–Cl···π interactions (Spek, 2003), provide strong packing forces in the structure of (I). A comparatively strong ππ interaction between an imidazole ring and another symmetry-related imidazole ring at (2 - x, -y, -1 - z), with their centroids separated by 3.429 (3) Å, plays an important part in the connection of adjacent porous layers. Weak C—H···π interactions also contribute to the interaction of neighboring layers. In addition, chlorine is involved in two separate C—Cl···π interactions, with C1···Cg1 = 4.623 (5) Å, Cl1···Cg1 = 3.575 (2) Å and C1—Cl1···Cg1 = 116°, and C1···Cg3 = 4.103 (4) Å, Cl1···Cg3 = 3.598 (2) Å and C1—Cl1···Cg3 = 94°, where Cg1 is the centroid of the imidazole ring of the molecule at (2 - x, -y, -z) and Cg3 is the centroid of the phenyl ring of the molecule at (1 - x, -y, -z).

Related literature top

For related literature, see: Aakeröy et al. (2006); Aakeröy & Seddon (1993); Bhogala (2003); Corna et al. (2004); Dobrzanska et al. (2006); MacGillivray & Atwood (1997); Van Roey et al. (1991); Sarkar & Biradha (2006); Wang et al. (2006, 2007); Zou et al. (2006). For structure interpretation tools, see: Spek (2003).

Experimental top

2,6-Bis[(imidazol-1-yl)methyl]-4-chlorophenol (0.05 mmol, 14.4 mg) in methanol (8 ml) and oxalic acid (0.05 mmol, 4.5 mg) in methanol (2 ml) and water (0.5 ml) were mixed and left to stand at room temperature. Colorless block crystals were obtained by slow evaporation of the solution after 8 days. Yield, 60%; 1H NMR (400 MHz, DMSO-d6): δ 5.25 (s, 4H), 7.08 (s, 2H), 7.10 (s, 2H), 7.30 (s, 2H), 8.09 (s, 2H).

Refinement top

H1O, H2N and H4N were observed in difference electron density maps and refined with isotropic displacement parameters. All other hydrogen atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.2; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The annulus structure of (I) formed via ionic hydrogen bonds.
[Figure 3] Fig. 3. A 2-D porous layer containing many annular units. Dashed lines indicate hydrogen bonds. H atoms have been omitted for clarity.
3,3'-(5-Chloro-2-hydroxy-m-phenylenedimethylene)diimidazolium oxalate top
Crystal data top
C14H15ClN4O2+·C2O42F(000) = 784
Mr = 378.77Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 28 reflections
a = 7.3158 (18) Åθ = 4.6–9.5°
b = 19.824 (4) ŵ = 0.26 mm1
c = 11.901 (2) ÅT = 294 K
β = 95.18 (2)°Block, colourless
V = 1719.0 (6) Å30.30 × 0.26 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.0°
Graphite monochromatorh = 88
ω/2θ scansk = 023
4162 measured reflectionsl = 714
3122 independent reflections3 standard reflections every 300 reflections
1789 reflections with I > 2σ(I) intensity decay: 3.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 0.96Calculated w = 1/[σ2(Fo2) + (0.1334P)2]
where P = (Fo2 + 2Fc2)/3
3122 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H15ClN4O2+·C2O42V = 1719.0 (6) Å3
Mr = 378.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3158 (18) ŵ = 0.26 mm1
b = 19.824 (4) ÅT = 294 K
c = 11.901 (2) Å0.30 × 0.26 × 0.20 mm
β = 95.18 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
4162 measured reflections3 standard reflections every 300 reflections
3122 independent reflections intensity decay: 3.7%
1789 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.53 e Å3
3122 reflectionsΔρmin = 0.39 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74430 (17)0.05960 (6)0.08437 (11)0.0619 (4)
O10.7766 (4)0.17156 (15)0.2216 (2)0.0429 (7)
O20.4825 (4)0.08021 (14)0.4268 (3)0.0468 (8)
O30.7050 (3)0.13828 (14)0.3313 (3)0.0482 (8)
O40.4533 (4)0.22842 (13)0.2732 (3)0.0503 (8)
O50.2327 (4)0.15468 (14)0.3234 (3)0.0510 (8)
N10.9367 (4)0.03705 (14)0.3488 (3)0.0328 (7)
N21.1907 (5)0.00811 (19)0.3871 (3)0.0427 (9)
N30.9597 (4)0.21898 (15)0.0491 (3)0.0364 (8)
N41.2236 (5)0.22666 (19)0.1424 (3)0.0481 (10)
C10.7455 (5)0.0099 (2)0.0058 (4)0.0406 (9)
C20.7426 (5)0.0001 (2)0.1197 (3)0.0395 (9)
H20.73780.04380.14840.047*
C30.7466 (4)0.05428 (18)0.1930 (3)0.0329 (9)
C40.7551 (4)0.12011 (19)0.1478 (3)0.0322 (8)
C50.7528 (5)0.1295 (2)0.0318 (3)0.0358 (9)
C60.7471 (5)0.0742 (2)0.0388 (4)0.0417 (10)
H60.74430.08030.11610.050*
C70.7489 (5)0.04358 (19)0.3167 (3)0.0358 (9)
H710.68920.08130.35680.043*
H720.68040.00300.33860.043*
C81.0552 (6)0.0889 (2)0.3687 (4)0.0451 (10)
H81.03050.13490.36520.054*
C91.2137 (6)0.0604 (2)0.3942 (4)0.0470 (10)
H91.31830.08280.41310.056*
C101.0253 (5)0.02073 (19)0.3585 (3)0.0368 (9)
H100.97760.06340.34690.044*
C110.7680 (5)0.1998 (2)0.0192 (4)0.0433 (10)
H11A0.70190.20120.08630.052*
H11B0.71150.23210.03440.052*
C121.0751 (6)0.2505 (2)0.0185 (4)0.0507 (11)
H121.04520.26600.09160.061*
C131.2387 (6)0.2548 (2)0.0404 (4)0.0562 (12)
H131.34420.27370.01570.067*
C141.0532 (6)0.2052 (2)0.1469 (3)0.0409 (10)
H141.00700.18420.20820.049*
C150.3939 (5)0.17246 (18)0.3160 (3)0.0325 (8)
C160.5419 (5)0.12589 (17)0.3614 (3)0.0318 (8)
H1O0.711 (7)0.203 (3)0.226 (4)0.063 (16)*
H2N1.270 (8)0.035 (3)0.394 (5)0.079 (18)*
H4N1.312 (7)0.222 (2)0.196 (4)0.055 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0567 (7)0.0605 (8)0.0677 (8)0.0019 (6)0.0008 (6)0.0262 (6)
O10.0453 (17)0.0360 (16)0.0483 (18)0.0147 (14)0.0097 (13)0.0047 (13)
O20.0307 (15)0.0506 (17)0.0604 (19)0.0080 (13)0.0115 (13)0.0209 (14)
O30.0237 (14)0.0511 (17)0.069 (2)0.0019 (12)0.0003 (12)0.0134 (15)
O40.0319 (15)0.0374 (16)0.079 (2)0.0125 (12)0.0116 (14)0.0118 (14)
O50.0290 (15)0.0453 (16)0.079 (2)0.0083 (13)0.0075 (14)0.0029 (15)
N10.0313 (16)0.0319 (16)0.0346 (18)0.0020 (13)0.0006 (13)0.0008 (13)
N20.037 (2)0.045 (2)0.046 (2)0.0123 (17)0.0044 (15)0.0011 (16)
N30.0323 (17)0.0364 (17)0.0395 (19)0.0050 (14)0.0019 (14)0.0009 (14)
N40.0336 (19)0.051 (2)0.057 (2)0.0017 (16)0.0115 (17)0.0116 (18)
C10.0270 (19)0.044 (2)0.050 (3)0.0021 (17)0.0012 (17)0.0095 (19)
C20.0286 (19)0.037 (2)0.052 (3)0.0009 (16)0.0033 (17)0.0011 (18)
C30.0141 (16)0.038 (2)0.046 (2)0.0003 (14)0.0025 (15)0.0015 (17)
C40.0160 (16)0.037 (2)0.043 (2)0.0090 (14)0.0020 (14)0.0018 (16)
C50.0228 (18)0.046 (2)0.037 (2)0.0080 (16)0.0034 (15)0.0052 (17)
C60.034 (2)0.052 (2)0.039 (2)0.0021 (18)0.0012 (17)0.0040 (18)
C70.0267 (19)0.036 (2)0.043 (2)0.0021 (15)0.0029 (16)0.0076 (17)
C80.042 (2)0.036 (2)0.058 (3)0.0021 (18)0.0097 (19)0.0064 (19)
C90.038 (2)0.054 (3)0.050 (3)0.0035 (19)0.0081 (19)0.001 (2)
C100.040 (2)0.033 (2)0.037 (2)0.0086 (18)0.0006 (17)0.0017 (16)
C110.028 (2)0.053 (2)0.048 (2)0.0075 (18)0.0022 (17)0.005 (2)
C120.043 (2)0.056 (3)0.054 (3)0.002 (2)0.003 (2)0.017 (2)
C130.036 (2)0.058 (3)0.074 (3)0.005 (2)0.006 (2)0.011 (2)
C140.043 (2)0.042 (2)0.037 (2)0.0015 (18)0.0009 (18)0.0073 (18)
C150.0278 (19)0.034 (2)0.035 (2)0.0053 (16)0.0002 (15)0.0072 (16)
C160.0242 (18)0.0286 (18)0.043 (2)0.0010 (15)0.0024 (15)0.0041 (16)
Geometric parameters (Å, º) top
Cl1—C11.747 (4)C2—C31.389 (5)
O1—C41.364 (5)C2—H20.930
O1—H1O0.79 (5)C3—C41.411 (5)
O2—C161.247 (4)C3—C71.489 (5)
O3—C161.239 (4)C4—C51.395 (5)
O4—C151.280 (4)C5—C61.385 (6)
O5—C151.227 (4)C5—C111.520 (5)
N1—C101.326 (4)C6—H60.930
N1—C81.380 (5)C7—H710.970
N1—C71.464 (5)C7—H720.970
N2—C101.310 (5)C8—C91.349 (6)
N2—C91.372 (6)C8—H80.930
N2—H2N0.80 (5)C9—H90.930
N3—C141.325 (5)C10—H100.930
N3—C121.369 (5)C11—H11A0.970
N3—C111.465 (5)C11—H11B0.970
N4—C141.323 (5)C12—C131.334 (6)
N4—C131.348 (6)C12—H120.930
N4—H4N0.87 (5)C13—H130.930
C1—C21.369 (6)C14—H140.930
C1—C61.380 (6)C15—C161.556 (5)
C4—O1—H1O122 (4)N1—C7—H72109.3
C10—N1—C8108.0 (3)C3—C7—H72109.3
C10—N1—C7125.2 (3)H71—C7—H72108.0
C8—N1—C7126.7 (3)C9—C8—N1107.0 (4)
C10—N2—C9109.0 (4)C9—C8—H8126.5
C10—N2—H2N126 (4)N1—C8—H8126.5
C9—N2—H2N124 (4)C8—C9—N2106.8 (4)
C14—N3—C12108.3 (3)C8—C9—H9126.6
C14—N3—C11124.5 (4)N2—C9—H9126.6
C12—N3—C11127.1 (3)N2—C10—N1109.1 (4)
C14—N4—C13108.9 (4)N2—C10—H10125.4
C14—N4—H4N125 (3)N1—C10—H10125.4
C13—N4—H4N126 (3)N3—C11—C5111.6 (3)
C2—C1—C6120.9 (4)N3—C11—H11A109.3
C2—C1—Cl1119.6 (3)C5—C11—H11A109.3
C6—C1—Cl1119.5 (3)N3—C11—H11B109.3
C1—C2—C3120.6 (4)C5—C11—H11B109.3
C1—C2—H2119.7H11A—C11—H11B108.0
C3—C2—H2119.7C13—C12—N3107.0 (4)
C2—C3—C4118.8 (4)C13—C12—H12126.5
C2—C3—C7120.8 (3)N3—C12—H12126.5
C4—C3—C7120.3 (3)C12—C13—N4107.7 (4)
O1—C4—C5123.3 (3)C12—C13—H13126.1
O1—C4—C3116.7 (3)N4—C13—H13126.1
C5—C4—C3119.8 (3)N4—C14—N3108.2 (4)
C6—C5—C4119.9 (4)N4—C14—H14125.9
C6—C5—C11119.3 (4)N3—C14—H14125.9
C4—C5—C11120.8 (3)O5—C15—O4124.5 (3)
C1—C6—C5119.8 (4)O5—C15—C16119.9 (3)
C1—C6—H6120.1O4—C15—C16115.5 (3)
C5—C6—H6120.1O3—C16—O2126.6 (3)
N1—C7—C3111.4 (3)O3—C16—C15117.6 (3)
N1—C7—H71109.3O2—C16—C15115.7 (3)
C3—C7—H71109.3
C6—C1—C2—C31.9 (6)C7—N1—C8—C9179.2 (3)
Cl1—C1—C2—C3178.9 (3)N1—C8—C9—N21.3 (5)
C1—C2—C3—C40.4 (5)C10—N2—C9—C80.0 (5)
C1—C2—C3—C7178.2 (3)C9—N2—C10—N11.3 (5)
C2—C3—C4—O1173.9 (3)C8—N1—C10—N22.1 (4)
C7—C3—C4—O13.9 (4)C7—N1—C10—N2179.3 (3)
C2—C3—C4—C52.3 (5)C14—N3—C11—C587.6 (5)
C7—C3—C4—C5180.0 (3)C12—N3—C11—C589.1 (5)
O1—C4—C5—C6174.1 (3)C6—C5—C11—N387.1 (4)
C3—C4—C5—C61.7 (5)C4—C5—C11—N389.2 (4)
O1—C4—C5—C112.1 (5)C14—N3—C12—C130.5 (5)
C3—C4—C5—C11178.0 (3)C11—N3—C12—C13176.6 (4)
C2—C1—C6—C52.5 (6)N3—C12—C13—N40.3 (5)
Cl1—C1—C6—C5178.4 (3)C14—N4—C13—C120.0 (5)
C4—C5—C6—C10.6 (5)C13—N4—C14—N30.3 (5)
C11—C5—C6—C1175.7 (3)C12—N3—C14—N40.5 (5)
C10—N1—C7—C393.7 (4)C11—N3—C14—N4176.7 (3)
C8—N1—C7—C383.0 (5)O5—C15—C16—O3164.8 (3)
C2—C3—C7—N188.7 (4)O4—C15—C16—O315.6 (5)
C4—C3—C7—N189.1 (4)O5—C15—C16—O216.5 (5)
C10—N1—C8—C92.1 (5)O4—C15—C16—O2163.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.79 (5)1.81 (5)2.597 (4)174 (5)
N2—H2N···O2ii0.80 (5)1.86 (6)2.647 (4)166 (6)
N2—H2N···O5ii0.80 (5)2.53 (6)3.012 (5)119 (5)
N4—H4N···O3iii0.87 (5)2.33 (5)2.861 (5)120 (4)
N4—H4N···O4iii0.87 (5)1.88 (5)2.710 (4)160 (4)
C8—H8···Cg20.932.833.664 (4)149
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC14H15ClN4O2+·C2O42
Mr378.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.3158 (18), 19.824 (4), 11.901 (2)
β (°) 95.18 (2)
V3)1719.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4162, 3122, 1789
Rint0.007
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.201, 0.96
No. of reflections3122
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.39

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.2; Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.79 (5)1.81 (5)2.597 (4)174 (5)
N2—H2N···O2ii0.80 (5)1.86 (6)2.647 (4)166 (6)
N2—H2N···O5ii0.80 (5)2.53 (6)3.012 (5)119 (5)
N4—H4N···O3iii0.87 (5)2.33 (5)2.861 (5)120 (4)
N4—H4N···O4iii0.87 (5)1.88 (5)2.710 (4)160 (4)
C8—H8···Cg20.932.833.664 (4)149
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds