Download citation
Download citation
link to html
In the mol­ecular structure of the title compound, C14H8F3NO, the furopyridine ring system and the benzene ring are almost coplanar, making a dihedral angle of 5.5 (1)°. In the crystal structure, mol­ecules are linked into layers parallel to the ab plane by inter­molecular C—H...N and C—H...F hydrogen bonds. Weak π–π inter­actions are observed between the furan and benzene rings [centroid–centroid distance = 3.829 (2) Å] of mol­ecules in adjacent layers, resulting in the formation of a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054062/ci2498sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054062/ci2498Isup2.hkl
Contains datablock I

CCDC reference: 672795

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.065
  • wR factor = 0.137
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A .. F17 .. 2.56 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, fluorinated compounds have been very important in the pharmaceutical field. Incorporation of an F atom instead of an H atom can alter the course of the reaction as well as biological activities. Introduction of further F atoms in a CF3 group provides better lipophilicity and the compounds might be pharmacologically more interesting compared to their non-fluorinated analogues. Many heterocyclic compounds, which bear the trifluoromethyl group, possess a wide range of biological activity (Navarrete-Vazquez et al., 2006), as herbicides (Bravo et al., 1994), fungicides (Jung et al., 2002) and inhibitors for platelet aggregation (Kücükgüzel et al., 2000). 7-(Trifluoromethyl)-quinoline derivatives have been evaluated for in vitro activity against some parasites in blood (Abadi & Brun, 2003). Furo[3,2-c]pyridine and its derivatives represent isoquinoline isosters, in which the benzene ring is replaced by the furan. The pyridine ring of this system can be readily coordinated to metal centers through N-donor atom. Structural characterization of isothiocyanate nickel(II) complexes with furo[3,2-c]pyridine and its 2-methyl, 2,3-dimethyl analogues, and [1]benzofuro[3,2-c]pyridine (Bzfupy) have been reported (Miklovič et al., 2004; Baran et al., 2005). We report here the crystal structure of the title compound, which is used as an important starting material for the synthesis of tetra-µ-acetato-bis[(benzofuro[3,2-c] pyridine)copper(II)] and bis(1-benzofuro[3,2-c]pyridine-κN) dichlorocobalt(II), the structures of which have already been reported (Vrábel et al., 2007a,b).

The molecular structure of title compound is shown in Fig. 1. The furo[3,2-c]pyridine ring system is essentially planar, with an r.m.s. deviation of 0.007 Å. The dihedral angle between the furo[3,2-c]pyridine ring system and the benzene ring is 5.5 (1)°. As can be seen from Fig. 2, the intermolecular C6—H6···N4 and C5—H5···F17 interactions (Table 1) link the molecules into layers parallel to the ab plane. Neighboring planes of molecules are connected through additional ring stacking interactions [shortest contact is C10···C15 (x, 1/2 - y, 1/2 + z), 3.370 (6) Å], resulting in a three-dimensional framework structure.

Related literature top

For related literature, see: Abadi & Brun (2003); Baran et al. (2005); Bravo et al. (1994); Jung et al. (2002); Kücükgüzel et al. (2000); Miklovič et al. (2004); Navarrete-Vazquez et al. (2006); Vrábel et al. (2007a,b). For preparation, see: Bradiaková et al. (2008); Gajdoš et al. (2006)

Experimental top

2-[3-(Trifluoromethyl)phenyl]furo[3,2-c]pyridine was prepared by five step synthesis according to literature procedures of Gajdoš et al. (2006) and Bradiaková et al. (2008).

Refinement top

All H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H distances of 0.93 Å and Uiso set at 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Dashed lines indicate intermolecular C—H···N and C—H···F hydrogen bonds, and short C···C contacts.
2-[3-(Trifluoromethyl)phenyl]furo[2,3-c]pyridine top
Crystal data top
C14H8F3NOF(000) = 536
Mr = 263.21Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9171 reflections
a = 13.4075 (16) Åθ = 3.3–29.4°
b = 12.1237 (9) ŵ = 0.13 mm1
c = 7.3008 (10) ÅT = 298 K
β = 104.754 (13)°Needle, colourless
V = 1147.6 (2) Å30.51 × 0.17 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2335 independent reflections
Radiation source: fine-focus sealed tube1185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.4°
Rotation method data acquisition using ω and ϕ scansh = 1616
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1515
Tmin = 0.960, Tmax = 0.997l = 99
32658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0009P)2 + 2.196P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2335 reflectionsΔρmax = 0.21 e Å3
173 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (4)
Crystal data top
C14H8F3NOV = 1147.6 (2) Å3
Mr = 263.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4075 (16) ŵ = 0.13 mm1
b = 12.1237 (9) ÅT = 298 K
c = 7.3008 (10) Å0.51 × 0.17 × 0.02 mm
β = 104.754 (13)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2335 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1185 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.997Rint = 0.058
32658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2335 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6800 (4)0.6145 (3)0.1799 (7)0.0839 (14)
H2A0.73270.65650.15370.101*
C30.5935 (4)0.6607 (4)0.2109 (8)0.0884 (15)
H3A0.58840.73720.20300.106*
C50.5215 (3)0.4974 (4)0.2603 (7)0.0748 (12)
H5A0.46770.45780.28810.090*
C60.6366 (3)0.3280 (3)0.2264 (6)0.0625 (11)
H6A0.59940.26640.24630.075*
C70.7296 (3)0.3280 (3)0.1896 (5)0.0551 (10)
C80.6841 (3)0.5019 (3)0.1900 (6)0.0636 (11)
C90.6055 (3)0.4405 (3)0.2292 (6)0.0595 (10)
C100.8025 (3)0.2409 (3)0.1813 (5)0.0540 (10)
C110.7755 (3)0.1315 (3)0.2039 (5)0.0583 (10)
H11A0.71070.11500.22050.070*
C120.8443 (3)0.0486 (3)0.2016 (6)0.0600 (11)
C130.9415 (3)0.0716 (4)0.1779 (6)0.0699 (12)
H13A0.98810.01470.17900.084*
C140.9688 (3)0.1781 (4)0.1528 (6)0.0713 (12)
H14A1.03350.19360.13450.086*
C150.8995 (3)0.2631 (3)0.1548 (6)0.0633 (11)
H15A0.91830.33550.13830.076*
C160.8184 (4)0.0687 (4)0.2311 (8)0.0783 (13)
N40.5155 (3)0.6069 (3)0.2514 (6)0.0838 (11)
O10.7619 (2)0.4357 (2)0.1668 (4)0.0671 (8)
F170.7194 (2)0.0846 (2)0.2133 (6)0.1261 (14)
F180.8665 (3)0.1046 (2)0.4027 (5)0.1156 (11)
F190.8467 (2)0.1372 (2)0.1143 (5)0.1072 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.086 (3)0.044 (2)0.132 (4)0.004 (2)0.045 (3)0.002 (3)
C30.094 (4)0.047 (2)0.133 (5)0.003 (3)0.044 (3)0.003 (3)
C50.067 (3)0.056 (3)0.104 (3)0.001 (2)0.027 (3)0.001 (3)
C60.061 (3)0.045 (2)0.081 (3)0.0037 (19)0.018 (2)0.003 (2)
C70.058 (3)0.041 (2)0.065 (3)0.0053 (18)0.014 (2)0.0015 (18)
C80.065 (3)0.045 (2)0.083 (3)0.005 (2)0.025 (2)0.006 (2)
C90.059 (2)0.048 (2)0.073 (3)0.002 (2)0.019 (2)0.003 (2)
C100.051 (2)0.050 (2)0.059 (2)0.0002 (18)0.0107 (19)0.0034 (18)
C110.054 (2)0.051 (2)0.070 (3)0.0008 (19)0.015 (2)0.001 (2)
C120.056 (2)0.049 (2)0.073 (3)0.0077 (19)0.013 (2)0.001 (2)
C130.058 (3)0.063 (3)0.091 (3)0.013 (2)0.023 (2)0.000 (2)
C140.055 (3)0.071 (3)0.091 (3)0.001 (2)0.023 (2)0.001 (2)
C150.060 (3)0.052 (2)0.078 (3)0.002 (2)0.019 (2)0.001 (2)
C160.071 (3)0.061 (3)0.106 (4)0.013 (2)0.029 (3)0.002 (3)
N40.088 (3)0.052 (2)0.116 (3)0.012 (2)0.034 (2)0.001 (2)
O10.0642 (17)0.0433 (15)0.099 (2)0.0034 (13)0.0309 (16)0.0001 (14)
F170.0762 (19)0.0539 (16)0.258 (4)0.0001 (14)0.061 (2)0.012 (2)
F180.147 (3)0.080 (2)0.120 (3)0.0169 (19)0.035 (2)0.0299 (18)
F190.125 (2)0.0591 (16)0.148 (3)0.0073 (16)0.055 (2)0.0197 (17)
Geometric parameters (Å, º) top
C2—C31.357 (6)C10—C111.395 (5)
C2—C81.368 (5)C10—C151.389 (5)
C2—H2A0.93C11—C121.367 (5)
C3—N41.329 (6)C11—H11A0.93
C3—H3A0.93C12—C131.385 (5)
C5—N41.331 (5)C12—C161.493 (6)
C5—C91.388 (5)C13—C141.366 (6)
C5—H5A0.93C13—H13A0.93
C6—C71.341 (5)C14—C151.390 (5)
C6—C91.428 (5)C14—H14A0.93
C6—H6A0.93C15—H15A0.93
C7—O11.399 (4)C16—F171.314 (5)
C7—C101.451 (5)C16—F191.313 (5)
C8—O11.360 (4)C16—F181.328 (5)
C8—C91.378 (5)
C3—C2—C8115.3 (4)C12—C11—C10120.1 (4)
C3—C2—H2A122.4C12—C11—H11A120.0
C8—C2—H2A122.4C10—C11—H11A120.0
N4—C3—C2126.1 (4)C11—C12—C13120.8 (4)
N4—C3—H3A117.0C11—C12—C16121.1 (4)
C2—C3—H3A117.0C13—C12—C16118.1 (4)
N4—C5—C9121.9 (4)C14—C13—C12120.0 (4)
N4—C5—H5A119.0C14—C13—H13A120.0
C9—C5—H5A119.0C12—C13—H13A120.0
C7—C6—C9107.0 (3)C13—C14—C15119.8 (4)
C7—C6—H6A126.5C13—C14—H14A120.1
C9—C6—H6A126.5C15—C14—H14A120.1
C6—C7—O1110.8 (3)C14—C15—C10120.6 (4)
C6—C7—C10132.8 (4)C14—C15—H15A119.7
O1—C7—C10116.3 (3)C10—C15—H15A119.7
O1—C8—C9111.0 (3)F17—C16—F19107.1 (4)
O1—C8—C2127.1 (4)F17—C16—F18106.3 (4)
C9—C8—C2121.9 (4)F19—C16—F18104.7 (4)
C8—C9—C5117.4 (4)F17—C16—C12113.1 (4)
C8—C9—C6105.8 (3)F19—C16—C12113.1 (4)
C5—C9—C6136.8 (4)F18—C16—C12111.9 (4)
C11—C10—C15118.7 (4)C3—N4—C5117.4 (4)
C11—C10—C7119.3 (3)C8—O1—C7105.4 (3)
C15—C10—C7122.0 (3)
C8—C2—C3—N40.9 (9)C10—C11—C12—C16178.2 (4)
C9—C6—C7—O10.3 (5)C11—C12—C13—C141.2 (7)
C9—C6—C7—C10175.4 (4)C16—C12—C13—C14179.2 (4)
C3—C2—C8—O1179.3 (4)C12—C13—C14—C151.2 (7)
C3—C2—C8—C90.1 (7)C13—C14—C15—C100.2 (7)
O1—C8—C9—C5178.7 (4)C11—C10—C15—C140.7 (6)
C2—C8—C9—C50.6 (7)C7—C10—C15—C14178.1 (4)
O1—C8—C9—C61.1 (5)C11—C12—C16—F1715.2 (7)
C2—C8—C9—C6179.6 (4)C13—C12—C16—F17166.9 (4)
N4—C5—C9—C80.6 (7)C11—C12—C16—F19137.1 (4)
N4—C5—C9—C6179.7 (5)C13—C12—C16—F1945.0 (6)
C7—C6—C9—C80.8 (5)C11—C12—C16—F18104.9 (5)
C7—C6—C9—C5178.9 (5)C13—C12—C16—F1873.1 (5)
C6—C7—C10—C114.2 (7)C2—C3—N4—C51.0 (9)
O1—C7—C10—C11179.7 (3)C9—C5—N4—C30.2 (7)
C6—C7—C10—C15174.6 (4)C9—C8—O1—C70.9 (5)
O1—C7—C10—C150.9 (6)C2—C8—O1—C7179.8 (5)
C15—C10—C11—C120.6 (6)C6—C7—O1—C80.4 (4)
C7—C10—C11—C12178.2 (4)C10—C7—O1—C8176.8 (3)
C10—C11—C12—C130.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N4i0.932.473.397 (5)171
C5—H5A···F17ii0.932.563.432 (5)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8F3NO
Mr263.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.4075 (16), 12.1237 (9), 7.3008 (10)
β (°) 104.754 (13)
V3)1147.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.51 × 0.17 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.960, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
32658, 2335, 1185
Rint0.058
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.137, 1.03
No. of reflections2335
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N4i0.932.473.397 (5)171.2
C5—H5A···F17ii0.932.563.432 (5)156.4
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds