Download citation
Download citation
link to html
The mol­ecular skeleton of the title Schiff base compound, C13H8Br2INO, is essentially planar due to an intra­molecular N—H...O hydrogen bond; the two aromatic rings make a dihedral angle of 4.4 (5)°. The crystal packing exhibits short inter­molecular I...Br contacts of 3.7226 (16) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055675/cv2344sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055675/cv2344Isup2.hkl
Contains datablock I

CCDC reference: 672892

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.067
  • wR factor = 0.197
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.21 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 14
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activities, photochromism and so on (Yeap et al., 2003). Thus, the chemists are prompted to generate the derivatives by introducing different substituents into the existing skeleton of the molecule (Zheng et al., 2005; Özek et al., 2007; Guo, 2007). Here, we report the structure of the title compound, (I) (Fig. 1), a new Schiff base, which was prepared by reaction of 3,5-dibromo-2-hydroxybenzaldehyde with 4-iodobenzenamine.

In (I), two aromatic substituents lie trans to each other across the C=N bond. The molecule is almost planar, with a dihedral angle of 4.4 (5)° between the aromatic rings. Intramolecular O1—H1···N1 hydrogen bonding generates an S(6) ring motif. The crystal packing exhibits short intermolecular I1···Br2i (d[I1···Br2]=3.7226 (16) Å, symmetry code: (i) -1 + x,1 + y,-1 + z) contacts.

Related literature top

For related crystal structures, see: Zheng et al. (2005); Özek et al. (2007); Guo (2007). For general background, see: Yeap et al. (2003).

Experimental top

The title compound, (I), was prepared by reaction of 3,5-dibromo-2-hydroxybenzaldehyde (1.4 g, 5 mmol) with 4-iodobenzenamine (1.2 g 5.5 mol) in 30 ml of 95% ethanol. The mixture was stirred and heated in air at reflux temperature for 30 min, after which 40 ml distilled water was added, the resulting product was separated by filtration (2.2 g, yield 91.7%). The pure product (0.5 g) was heated and dissolved in 20 ml of 1,2-dichloroethane. Single crystals were obtained from this solution by slow evaporation over a period of 2 days at room temperature.

Refinement top

Atom H1 was found in difference Fourier map, but placed in idealized position with O—H = 0.82 Å and refined as riding, with Uiso(H) = 1.5 Ueq (O). C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering and displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bond.
2,4-Dibromo-6-(4-iodophenyliminomethyl)phenol top
Crystal data top
C13H8Br2INOZ = 2
Mr = 480.92F(000) = 448
Triclinic, P1Dx = 2.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0213 (17) ÅCell parameters from 1701 reflections
b = 8.5936 (18) Åθ = 2.6–26.4°
c = 11.290 (2) ŵ = 8.08 mm1
α = 87.066 (3)°T = 294 K
β = 76.541 (4)°Prism, red
γ = 66.203 (3)°0.14 × 0.12 × 0.10 mm
V = 691.7 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2455 independent reflections
Radiation source: fine-focus sealed tube1802 reflections with I > 2σ
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.334, Tmax = 0.447k = 910
3478 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1364P)2]
where P = (Fo2 + 2Fc2)/3
2455 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 2.19 e Å3
0 restraintsΔρmin = 2.26 e Å3
Crystal data top
C13H8Br2INOγ = 66.203 (3)°
Mr = 480.92V = 691.7 (2) Å3
Triclinic, P1Z = 2
a = 8.0213 (17) ÅMo Kα radiation
b = 8.5936 (18) ŵ = 8.08 mm1
c = 11.290 (2) ÅT = 294 K
α = 87.066 (3)°0.14 × 0.12 × 0.10 mm
β = 76.541 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2455 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1802 reflections with I > 2σ
Tmin = 0.334, Tmax = 0.447Rint = 0.043
3478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.00Δρmax = 2.19 e Å3
2455 reflectionsΔρmin = 2.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.29339 (10)0.87433 (9)0.00531 (6)0.0523 (3)
N10.6493 (10)0.6165 (10)0.4578 (7)0.0363 (18)
O10.7096 (10)0.7011 (8)0.6555 (6)0.0471 (17)
H10.71620.72490.58370.071*
Br10.87718 (17)0.65091 (14)0.87405 (10)0.0578 (4)
Br21.19331 (18)0.03821 (13)0.69717 (11)0.0579 (4)
C10.8181 (11)0.5375 (11)0.6621 (8)0.0313 (19)
C20.9089 (13)0.4830 (12)0.7589 (8)0.038 (2)
C31.0183 (13)0.3134 (12)0.7704 (8)0.037 (2)
H31.07510.27880.83570.044*
C41.0406 (13)0.1962 (12)0.6813 (8)0.039 (2)
C50.9571 (14)0.2448 (13)0.5844 (9)0.043 (2)
H50.97540.16350.52600.052*
C60.8464 (12)0.4136 (12)0.5735 (8)0.033 (2)
C70.7600 (13)0.4619 (13)0.4687 (8)0.038 (2)
H70.78590.37930.40910.046*
C80.5710 (11)0.6631 (11)0.3539 (8)0.0306 (19)
C90.5922 (14)0.5538 (13)0.2609 (9)0.043 (2)
H90.66120.43770.26480.052*
C100.5139 (14)0.6122 (13)0.1631 (9)0.044 (2)
H100.52660.53630.10240.053*
C110.4142 (13)0.7881 (12)0.1555 (8)0.038 (2)
C120.3925 (14)0.8980 (12)0.2458 (9)0.043 (2)
H120.32591.01430.24090.052*
C130.4693 (13)0.8370 (13)0.3450 (9)0.041 (2)
H130.45310.91300.40670.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0699 (5)0.0484 (5)0.0438 (5)0.0146 (4)0.0420 (4)0.0128 (3)
N10.044 (4)0.038 (5)0.036 (4)0.018 (4)0.026 (3)0.012 (3)
O10.064 (4)0.029 (4)0.046 (4)0.004 (3)0.035 (3)0.003 (3)
Br10.0766 (8)0.0456 (7)0.0464 (7)0.0061 (6)0.0382 (6)0.0035 (5)
Br20.0851 (8)0.0310 (6)0.0618 (7)0.0127 (6)0.0468 (6)0.0138 (5)
C10.033 (4)0.028 (5)0.034 (4)0.010 (4)0.016 (4)0.006 (4)
C20.045 (5)0.044 (6)0.035 (5)0.018 (4)0.028 (4)0.014 (4)
C30.048 (5)0.039 (6)0.031 (4)0.019 (4)0.023 (4)0.008 (4)
C40.043 (5)0.037 (5)0.038 (5)0.010 (4)0.027 (4)0.015 (4)
C50.059 (6)0.039 (6)0.048 (5)0.026 (5)0.037 (5)0.015 (4)
C60.036 (4)0.036 (5)0.036 (5)0.015 (4)0.024 (4)0.016 (4)
C70.050 (5)0.041 (6)0.039 (5)0.025 (5)0.029 (4)0.012 (4)
C80.032 (4)0.031 (5)0.034 (5)0.012 (4)0.021 (4)0.009 (4)
C90.055 (6)0.034 (5)0.041 (5)0.010 (5)0.026 (5)0.007 (4)
C100.053 (6)0.037 (6)0.038 (5)0.008 (5)0.025 (4)0.001 (4)
C110.043 (5)0.043 (6)0.034 (5)0.015 (4)0.025 (4)0.011 (4)
C120.059 (6)0.028 (5)0.051 (6)0.014 (4)0.039 (5)0.014 (4)
C130.053 (5)0.036 (5)0.039 (5)0.012 (4)0.030 (4)0.002 (4)
Geometric parameters (Å, º) top
I1—C112.102 (9)C5—H50.9300
N1—C71.285 (12)C6—C71.467 (11)
N1—C81.423 (10)C7—H70.9300
O1—C11.331 (10)C8—C91.378 (13)
O1—H10.8200C8—C131.396 (13)
Br1—C21.892 (10)C9—C101.370 (13)
Br2—C41.914 (9)C9—H90.9300
C1—C21.409 (12)C10—C111.406 (13)
C1—C61.411 (13)C10—H100.9300
C2—C31.383 (13)C11—C121.359 (14)
C3—C41.390 (14)C12—C131.381 (12)
C3—H30.9300C12—H120.9300
C4—C51.374 (12)C13—H130.9300
C5—C61.379 (13)
C7—N1—C8120.7 (8)N1—C7—H7119.4
C1—O1—H1109.5C6—C7—H7119.4
O1—C1—C2120.4 (8)C9—C8—C13118.1 (8)
O1—C1—C6121.7 (8)C9—C8—N1126.1 (8)
C2—C1—C6117.9 (8)C13—C8—N1115.8 (8)
C3—C2—C1121.9 (9)C10—C9—C8121.6 (9)
C3—C2—Br1120.5 (6)C10—C9—H9119.2
C1—C2—Br1117.6 (7)C8—C9—H9119.2
C2—C3—C4118.0 (8)C9—C10—C11119.3 (9)
C2—C3—H3121.0C9—C10—H10120.4
C4—C3—H3121.0C11—C10—H10120.4
C5—C4—C3121.9 (9)C12—C11—C10120.0 (8)
C5—C4—Br2120.4 (8)C12—C11—I1121.4 (7)
C3—C4—Br2117.8 (6)C10—C11—I1118.6 (7)
C4—C5—C6120.2 (10)C11—C12—C13120.0 (9)
C4—C5—H5119.9C11—C12—H12120.0
C6—C5—H5119.9C13—C12—H12120.0
C5—C6—C1120.1 (8)C12—C13—C8121.0 (9)
C5—C6—C7119.0 (9)C12—C13—H13119.5
C1—C6—C7120.8 (8)C8—C13—H13119.5
N1—C7—C6121.1 (9)
O1—C1—C2—C3178.1 (8)C8—N1—C7—C6178.0 (8)
C6—C1—C2—C31.9 (13)C5—C6—C7—N1176.9 (9)
O1—C1—C2—Br12.1 (12)C1—C6—C7—N13.5 (14)
C6—C1—C2—Br1177.9 (6)C7—N1—C8—C94.3 (14)
C1—C2—C3—C41.4 (14)C7—N1—C8—C13173.3 (9)
Br1—C2—C3—C4178.3 (7)C13—C8—C9—C101.0 (15)
C2—C3—C4—C50.2 (14)N1—C8—C9—C10178.6 (9)
C2—C3—C4—Br2179.7 (7)C8—C9—C10—C111.8 (16)
C3—C4—C5—C60.4 (15)C9—C10—C11—C121.5 (16)
Br2—C4—C5—C6179.7 (7)C9—C10—C11—I1179.4 (8)
C4—C5—C6—C10.1 (14)C10—C11—C12—C130.4 (15)
C4—C5—C6—C7179.6 (9)I1—C11—C12—C13178.2 (8)
O1—C1—C6—C5178.9 (9)C11—C12—C13—C80.5 (16)
C2—C1—C6—C51.2 (13)C9—C8—C13—C120.2 (15)
O1—C1—C6—C71.5 (13)N1—C8—C13—C12177.7 (9)
C2—C1—C6—C7178.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.022.588 (10)126

Experimental details

Crystal data
Chemical formulaC13H8Br2INO
Mr480.92
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.0213 (17), 8.5936 (18), 11.290 (2)
α, β, γ (°)87.066 (3), 76.541 (4), 66.203 (3)
V3)691.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)8.08
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.334, 0.447
No. of measured, independent and
observed (I > 2σ) reflections
3478, 2455, 1802
Rint0.043
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.197, 1.00
No. of reflections2455
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.19, 2.26

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.022.588 (10)126.2
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds