Download citation
Download citation
link to html
The title complex, [Ni2(C2H3O2)4(C10H7N3)]n or [Ni2(dbp)(C2O2H3)4]n (dbp = 2,3′-dipyridylamine), forms a polymeric linear chain. The repeat unit of the chain is the dinuclear [Ni2(C10H7N3)(C2O2H3)4] of the paddle-wheel type. The two Ni atoms are related by symmetry through an inversion center. Each Ni atom has a square-pyramidal coordination environment, with four O atoms from four acetate groups forming the basal plane, and a pyridyl N atom occupying the apex. The bridging dbp ligand is disordered over an inversion center, involving two alternative positions for the NH group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055353/dn2259sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055353/dn2259Isup2.hkl
Contains datablock I

CCDC reference: 672617

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.015 Å
  • Disorder in main residue
  • R factor = 0.054
  • wR factor = 0.132
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C4
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT213_ALERT_2_C Atom C4 has ADP max/min Ratio ............. 3.90 prola PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.21 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ni1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 15 PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C4 - C5 ... 1.38 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.21 Ratio
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemical structure of the organic ligands including the molecular angle, length, and relative orientation of the donor groups plays an extremely important role in dictating polymer topology. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a Tshape,V-shape etc, in the construction of versatile coordination polymer architectures (Su et al., 2003; Gudbjartson et al., 1999). In this paper, we report the synthesis and crystal structure of the title complex,(I).

The structure of (I) consists of one-dimensional polymeric [Ni2(dbp)2(Ac)4]n chains built up from dinuclear Ni(II) subunit of the paddle-wheel type. The two nickel atoms are related by symmetry through inversion center (Fig. 1). Each nickel atom has a square pyramid coordination environment, with four oxygen atoms from four acetyl groups, forming the equatorial plane, and the pyridyl nitrogen atom, occupying the apex. This big paddle-wheel type arrangement prevents further torsion of the two pyridine rings of the bridging ligand, and then results in the formation of a neutral one-dimensional linear chain rather than a helical chain. The occurrence of intramolecular (N—H···O) hydrogen bond stabilize the architecture(Table 1).

Related literature top

For related literature, see: Gudbjartson et al. (1999); Su et al. (2003).

Experimental top

Ni(AC)2(0.036 g, 0.028 mmol), dbp (0.018 g, 0.013 mmol) a mixed solvent of acetonitrile, the mixture was heated for eight hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) and Uiso(H) = 1.5Ueq(Cmethyl).

Some of the C atoms of the pyridyl group display very elongated ellipsoids, however no correct disordered models could be defined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP view of (I) showing the formation of the polymeric chain, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2 - x, 2 - y, 2 - z; ii: -x + 2, y, -z + 3/2; (iii) x, -y + 2, 1/2 + z]
Poly[(tetraacetyl-κ2N:N')dinickel(II)-µ-2,3'-dipyridylamine-κ2O:O'] top
Crystal data top
[Ni2(C2H3O2)4(C10H7N3)]F(000) = 1072
Mr = 522.78Dx = 1.581 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1973 reflections
a = 13.4008 (13) Åθ = 2.9–25.2°
b = 8.4880 (9) ŵ = 1.76 mm1
c = 20.112 (2) ÅT = 298 K
β = 106.191 (7)°Block, green
V = 2196.9 (4) Å30.27 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1973 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 2.9°
ϕ and ω scanh = 1416
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 108
Tmin = 0.648, Tmax = 0.766l = 2418
5441 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0465P)2]
where P = (Fo2 + 2Fc2)/3
1973 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni2(C2H3O2)4(C10H7N3)]V = 2196.9 (4) Å3
Mr = 522.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.4008 (13) ŵ = 1.76 mm1
b = 8.4880 (9) ÅT = 298 K
c = 20.112 (2) Å0.27 × 0.21 × 0.16 mm
β = 106.191 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
1973 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1098 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.766Rint = 0.095
5441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.57 e Å3
1973 reflectionsΔρmin = 0.45 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.95385 (5)0.92235 (8)0.94293 (4)0.0423 (3)
N10.8818 (4)0.7990 (6)0.8453 (3)0.0577 (14)
N21.0307 (9)0.7655 (13)0.8155 (5)0.061 (3)0.50
H21.06130.78450.85840.074*0.50
O11.0991 (3)0.8984 (5)0.9401 (2)0.0644 (12)
O21.1772 (3)1.0270 (5)1.0372 (3)0.0688 (13)
O30.9695 (3)0.7416 (5)1.0053 (2)0.0603 (12)
O41.0480 (3)0.8712 (5)1.1020 (2)0.0654 (13)
C10.7828 (6)0.7539 (8)0.8293 (4)0.077 (2)
H10.74450.76580.86110.092*
C20.7364 (8)0.6873 (11)0.7633 (6)0.121 (4)
H210.66770.65350.75160.145*
C30.7940 (15)0.6729 (14)0.7163 (7)0.165 (8)
H30.76320.63230.67240.198*
C40.8911 (11)0.7158 (18)0.7332 (5)0.170 (8)
C50.9334 (7)0.7787 (12)0.7980 (4)0.098 (3)
C61.1793 (5)0.9576 (7)0.9823 (4)0.0533 (17)
C71.2802 (5)0.9406 (8)0.9663 (4)0.079 (2)
H7A1.31011.04280.96470.118*
H7B1.26950.88970.92220.118*
H7C1.32650.87821.00150.118*
C81.0076 (5)0.7494 (8)1.0691 (4)0.0573 (17)
C91.0085 (6)0.6030 (8)1.1110 (4)0.074 (2)
H9A0.94870.60241.12840.111*
H9B1.07040.60091.14910.111*
H9C1.00690.51201.08240.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0396 (5)0.0408 (5)0.0436 (5)0.0011 (4)0.0069 (3)0.0036 (4)
N10.054 (4)0.054 (4)0.062 (4)0.002 (3)0.011 (3)0.003 (3)
N20.074 (9)0.085 (8)0.022 (5)0.016 (7)0.008 (5)0.004 (5)
O10.051 (3)0.068 (3)0.072 (3)0.003 (2)0.014 (2)0.009 (2)
O20.050 (3)0.077 (3)0.078 (3)0.003 (2)0.015 (2)0.019 (3)
O30.074 (3)0.049 (3)0.053 (3)0.008 (2)0.011 (2)0.003 (2)
O40.082 (3)0.043 (3)0.062 (3)0.003 (2)0.006 (2)0.005 (2)
C10.057 (5)0.064 (5)0.098 (6)0.007 (4)0.001 (4)0.016 (4)
C20.090 (8)0.082 (7)0.138 (10)0.040 (6)0.053 (7)0.006 (7)
C30.25 (2)0.111 (9)0.082 (9)0.083 (11)0.048 (10)0.036 (7)
C40.167 (12)0.259 (16)0.044 (6)0.143 (12)0.038 (7)0.032 (8)
C50.067 (6)0.163 (9)0.053 (5)0.029 (6)0.002 (4)0.005 (5)
C60.042 (4)0.050 (4)0.070 (5)0.003 (3)0.019 (4)0.006 (4)
C70.063 (5)0.072 (5)0.112 (6)0.006 (4)0.041 (4)0.003 (4)
C80.050 (4)0.053 (5)0.072 (5)0.009 (3)0.022 (4)0.001 (4)
C90.095 (6)0.056 (5)0.072 (5)0.005 (4)0.027 (4)0.013 (4)
Geometric parameters (Å, º) top
Ni1—O2i1.955 (5)C1—C21.418 (12)
Ni1—O31.956 (4)C1—H10.9300
Ni1—O4i1.968 (4)C2—C31.381 (16)
Ni1—O11.974 (4)C2—H210.9300
Ni1—N12.197 (5)C3—C41.30 (2)
Ni1—Ni1i2.6371 (14)C3—H30.9300
N1—C11.332 (8)C4—C51.376 (13)
N1—C51.333 (10)C4—N2ii1.675 (18)
N2—C51.258 (12)C6—C71.482 (9)
N2—C4ii1.675 (18)C7—H7A0.9600
N2—H20.8600C7—H7B0.9600
O1—C61.273 (7)C7—H7C0.9600
O2—C61.258 (7)C8—C91.501 (9)
O2—Ni1i1.955 (5)C9—H9A0.9600
O3—C81.242 (7)C9—H9B0.9600
O4—C81.265 (8)C9—H9C0.9600
O4—Ni1i1.968 (4)
O2i—Ni1—O389.00 (19)C3—C2—H21120.2
O2i—Ni1—O4i90.07 (19)C1—C2—H21120.2
O3—Ni1—O4i167.99 (17)C4—C3—C2120.3 (12)
O2i—Ni1—O1168.00 (18)C4—C3—H3119.9
O3—Ni1—O190.45 (18)C2—C3—H3119.8
O4i—Ni1—O187.97 (19)C3—C4—C5118.2 (14)
O2i—Ni1—N195.3 (2)C3—C4—N2ii131.3 (11)
O3—Ni1—N198.13 (18)C5—C4—N2ii107.3 (13)
O4i—Ni1—N193.87 (18)N2—C5—N1121.0 (8)
O1—Ni1—N196.7 (2)N2—C5—C4110.5 (10)
O2i—Ni1—Ni1i86.66 (14)N1—C5—C4124.6 (11)
O3—Ni1—Ni1i83.87 (13)O2—C6—O1123.3 (6)
O4i—Ni1—Ni1i84.13 (13)O2—C6—C7118.8 (6)
O1—Ni1—Ni1i81.36 (13)O1—C6—C7118.0 (7)
N1—Ni1—Ni1i177.22 (17)C6—C7—H7A109.5
C1—N1—C5118.1 (7)C6—C7—H7B109.5
C1—N1—Ni1120.8 (5)H7A—C7—H7B109.5
C5—N1—Ni1120.9 (5)C6—C7—H7C109.5
C5—N2—C4ii128.9 (9)H7A—C7—H7C109.5
C5—N2—H2115.6H7B—C7—H7C109.5
C4ii—N2—H2115.6O3—C8—O4125.2 (6)
C6—O1—Ni1126.6 (4)O3—C8—C9118.2 (6)
C6—O2—Ni1i121.6 (4)O4—C8—C9116.6 (6)
C8—O3—Ni1124.0 (4)C8—C9—H9A109.5
C8—O4—Ni1i122.5 (4)C8—C9—H9B109.5
N1—C1—C2119.1 (8)H9A—C9—H9B109.5
N1—C1—H1120.4C8—C9—H9C109.5
C2—C1—H1120.4H9A—C9—H9C109.5
C3—C2—C1119.6 (10)H9B—C9—H9C109.5
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.852.666 (10)157

Experimental details

Crystal data
Chemical formula[Ni2(C2H3O2)4(C10H7N3)]
Mr522.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.4008 (13), 8.4880 (9), 20.112 (2)
β (°) 106.191 (7)
V3)2196.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.27 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.648, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
5441, 1973, 1098
Rint0.095
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 1.00
No. of reflections1973
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.852.666 (10)157.4
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds