Download citation
Download citation
link to html
The title complex, [Mo2(CH3O)6(NO)2(H2O)2], is a pseudocentrosymmetric dimer. The MoII centres are bridged by two methoxo groups and adopt distorted octa­hedral geometries. The crystal structure exhibits two intra­molecular O—H...O contacts (O...O < 3.0 Å) between coordinated water mol­ecules and methoxo groups. One H atom of each water mol­ecule is disordered equally over two sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055894/dn2260sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055894/dn2260Isup2.hkl
Contains datablock I

CCDC reference: 672609

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](O-C) = 0.006 Å
  • R factor = 0.041
  • wR factor = 0.128
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - O5 .. 6.66 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo2 - O10 .. 6.25 su PLAT413_ALERT_2_C Short Inter XH3 .. XHn H6B .. H6B .. 2.12 Ang. PLAT728_ALERT_1_C D-H..A Calc 167.00, Rep 165(20) Dev... 2.00 Deg. O5 -H5B -O2 1.555 1.555 2.645 PLAT731_ALERT_1_C Bond Calc 0.88(7), Rep 0.89(2) ...... 3.50 su-Ra O5 -H5A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.89(6), Rep 0.89(2) ...... 3.00 su-Ra O10 -H10A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.88(7), Rep 0.89(2) ...... 3.50 su-Ra O5 -H5A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.89(6), Rep 0.89(2) ...... 3.00 su-Ra O10 -H10A 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (6) 5.53 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (5) 5.47 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The molybdenum dimer (I) exhibits a planar central four-membered Mo2O2 ring (torsional angle of 1.33 (11)°) with a Mo—Mo distance of 3.3933 (7) Å excluding any metal–metal bond. The nitrosyl ligands are nearly linear (176.7 (3) and 175.2 (3)°) and coordinated in trans positions to the methoxy bridges as observed in [Mo2(C5H5)2(OMe)2(CH2SiMe3)2(NO)2] (Hayton et al., 2002). Two terminal methoxo ligands complete the nearly planar core [Mo2(µ-OMe)2(NO)2(OMe)2] whereas the two other ones are almost perpendicular to this plane and trans to coordinated water molecules. The Mo—Oaq bond distances of 2.269 (4) Å and 2.274 (4) Å are longer than the reported unweighted mean of 2.201 Å (Orpen et al., 1989).

In this conformation we observe two intramolecular O—H···H contacts (H10A···O4 = 2.06 (3) Å, O10···O4 = 2.929 (5) Å; H5A···O8 = 2.24 (6) Å, O5···O8 = 2.991 (5) Å) between the methoxo groups and the water molecules located on the same side of the Mo2O2 plane (Fig. 1). The other water H atoms are positionally disordered and form intermolecular hydrogen bonds with oxygen atoms of the nitrosyl groups and of one terminal methoxo ligand (O···O < 3.3 Å).

Related literature top

For related di-µ-methoxo-bis(nitrosylmolybdenum) complexes, see: Hayton et al. (2002). For related di-µ-methoxo-bis(dimethoxomolybdenum) complexes, see: Kessler et al. (1993); Clegg et al. (1996); Bardina et al. (2006). For related di-µ-methoxo-bis(methoxomolybdenum) complexes, see: Hsieh & Zubieta (1987); Chilou et al. (1989). For reference bond lengths, see: Orpen et al. (1989).

Experimental top

Two equivalents of sodium hydroxide were added to a methanol solution of Mo(NO)2(Cl)2 in order to produce Mo(NO)2(OH)2(MeOH)2. The green solution was slowly added to two equivalents of 1,3,5-triaza-7-phosphaadamantate (PTA) partly dissolved in methanol and the colour of the solution turned red within one hour. The IR spectrum of the reaction solution exhibited a strong NO band at 1638 cm-1 indicating loss of one nitrosyl ligand from the molybdenum coordination sphere. Also the solid-state IR (ATR) spectrum of the soluble part revealed a ν(NO) absorption at 1640 cm-1 and a very weak one at 1620 cm-1, and additionally a strong ν(CO) band at 1037 cm-1 and a few other signals attributable to PTA and to the corresponding phosphine oxyde (OPTA). The compounds soluble in methanol were redissolved in dichloromethane and red crystals of compound [Mo(µ-OMe)(OMe)2(NO)(H2O)]2 (I) co-crystallized together with PTA and OPTA.

Refinement top

While the hydrogen atoms attached to carbon atoms were placed in geometrically calculated positions, those on water molecules were located in a difference Fourier map and then refined with the O—H distances restrained to 0.86 (2) Å. Three residual peaks could be attributed to H atoms for each coordinated water molecules. The positional disorders were refined with H5A and H10A with occupancy factors as unity and the second hydrogen atoms occupying two sites, H5B/H5C and H10B/H10C (occupancy factors of 1/2). Except H5A and H10A, all H atoms were included in the refinement with Uiso values of 1.3Ueq (parent atom).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1998); cell refinement: IPDS Software (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Di-µ-methoxo-bis[aquadimethoxonitrosylmolybdenum(II)] top
Crystal data top
[Mo2(CH3O)6(NO)2(H2O)2]F(000) = 944
Mr = 474.14Dx = 1.91 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7998 reflections
a = 8.7567 (13) Åθ = 2.8–30.3°
b = 15.6682 (17) ŵ = 1.56 mm1
c = 12.5488 (18) ÅT = 183 K
β = 106.750 (16)°Prism, red
V = 1648.7 (4) Å30.5 × 0.45 × 0.43 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
3240 reflections with I > 2σ(I)
ϕ rotation scanRint = 0.085
Absorption correction: numerical
(Coppens et al., 1965)
θmax = 28°, θmin = 3.6°
Tmin = 0.522, Tmax = 0.614h = 1111
19216 measured reflectionsk = 020
3874 independent reflectionsl = 016
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0942P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.75 e Å3
3874 reflectionsΔρmin = 1.21 e Å3
207 parameters
Crystal data top
[Mo2(CH3O)6(NO)2(H2O)2]V = 1648.7 (4) Å3
Mr = 474.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7567 (13) ŵ = 1.56 mm1
b = 15.6682 (17) ÅT = 183 K
c = 12.5488 (18) Å0.5 × 0.45 × 0.43 mm
β = 106.750 (16)°
Data collection top
Stoe IPDS
diffractometer
3874 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
3240 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.614Rint = 0.085
19216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.75 e Å3
3874 reflectionsΔρmin = 1.21 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.14909 (4)0.05522 (2)0.25247 (3)0.02109 (13)
Mo20.35941 (4)0.22983 (2)0.21836 (3)0.02114 (13)
N10.0325 (4)0.0077 (2)0.1801 (3)0.0242 (7)
O10.1556 (4)0.0263 (2)0.1254 (3)0.0327 (7)
N20.5425 (4)0.2756 (2)0.2931 (3)0.0247 (7)
O20.6664 (4)0.3052 (2)0.3518 (3)0.0359 (8)
O30.2412 (4)0.04131 (19)0.3389 (3)0.0299 (7)
C30.1717 (6)0.1235 (3)0.3376 (4)0.0337 (10)
H3A0.07490.11870.35860.044*
H3B0.24490.16020.38930.044*
H3C0.14840.14720.26410.044*
O40.0788 (4)0.11761 (19)0.3613 (3)0.0279 (6)
C40.0701 (6)0.1164 (3)0.3822 (5)0.0391 (11)
H4A0.14420.08410.32520.051*
H4B0.10850.17380.38230.051*
H4C0.05950.09050.45330.051*
O50.2715 (5)0.0038 (2)0.1292 (3)0.0407 (8)
H5A0.356 (7)0.035 (5)0.131 (8)0.09 (3)*
H5B0.30 (2)0.048 (5)0.145 (18)0.114*0.50
H5C0.21 (2)0.004 (14)0.061 (6)0.114*0.50
O60.3733 (3)0.12295 (17)0.3148 (2)0.0212 (5)
C60.4855 (6)0.1103 (3)0.4203 (4)0.0313 (9)
H6A0.59120.12010.41480.041*
H6B0.47740.05290.44470.041*
H6C0.46390.14950.47300.041*
O70.1374 (3)0.16046 (17)0.1539 (2)0.0224 (6)
C70.0167 (6)0.1784 (3)0.0530 (4)0.0312 (9)
H7A0.02750.14020.00420.041*
H7B0.02750.23620.03090.041*
H7C0.08640.17090.06430.041*
O80.4287 (4)0.16934 (19)0.1057 (3)0.0274 (6)
C80.5864 (6)0.1568 (4)0.1018 (5)0.0395 (11)
H8A0.65800.19030.15880.051*
H8B0.59490.17390.03030.051*
H8C0.61390.09750.11380.051*
O90.2601 (4)0.32633 (19)0.1369 (3)0.0307 (7)
C90.3085 (7)0.4130 (3)0.1455 (4)0.0376 (11)
H9A0.27990.43950.20600.049*
H9B0.25640.44220.07740.049*
H9C0.42200.41610.15880.049*
O100.2458 (5)0.2776 (2)0.3488 (4)0.0392 (8)
H10A0.188 (7)0.235 (3)0.363 (6)0.06 (2)*
H10B0.190 (18)0.324 (6)0.328 (14)0.081*0.50
H10C0.305 (17)0.297 (10)0.413 (7)0.081*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0247 (2)0.02005 (19)0.0179 (2)0.00202 (12)0.00518 (15)0.00039 (11)
Mo20.0235 (2)0.01972 (19)0.0211 (2)0.00026 (11)0.00789 (15)0.00202 (12)
N10.0294 (19)0.0235 (16)0.0190 (16)0.0002 (13)0.0060 (15)0.0005 (13)
O10.0332 (18)0.0349 (17)0.0261 (16)0.0083 (13)0.0025 (14)0.0037 (13)
N20.0278 (19)0.0248 (17)0.0234 (18)0.0014 (13)0.0106 (16)0.0017 (13)
O20.0309 (17)0.0423 (19)0.0331 (18)0.0151 (15)0.0071 (15)0.0078 (15)
O30.0353 (17)0.0251 (14)0.0269 (16)0.0017 (12)0.0053 (14)0.0059 (12)
C30.047 (3)0.0226 (19)0.031 (2)0.0029 (19)0.010 (2)0.0056 (17)
O40.0303 (16)0.0289 (15)0.0273 (16)0.0050 (12)0.0126 (14)0.0034 (12)
C40.036 (3)0.044 (3)0.042 (3)0.011 (2)0.019 (2)0.018 (2)
O50.048 (2)0.0381 (19)0.038 (2)0.0015 (17)0.0153 (18)0.0040 (16)
O60.0217 (14)0.0213 (12)0.0170 (13)0.0015 (10)0.0003 (11)0.0018 (10)
C60.031 (2)0.034 (2)0.025 (2)0.0029 (18)0.0015 (19)0.0077 (17)
O70.0224 (14)0.0239 (13)0.0185 (14)0.0004 (11)0.0020 (12)0.0037 (11)
C70.029 (2)0.035 (2)0.024 (2)0.0006 (17)0.0023 (18)0.0072 (17)
O80.0312 (16)0.0298 (15)0.0243 (15)0.0002 (12)0.0128 (13)0.0014 (12)
C80.034 (3)0.050 (3)0.039 (3)0.004 (2)0.018 (2)0.008 (2)
O90.0354 (17)0.0252 (15)0.0349 (18)0.0032 (12)0.0153 (15)0.0095 (12)
C90.057 (3)0.022 (2)0.039 (3)0.004 (2)0.023 (3)0.0048 (19)
O100.043 (2)0.0349 (18)0.045 (2)0.0004 (15)0.0203 (19)0.0024 (15)
Geometric parameters (Å, º) top
Mo1—Mo23.3933 (7)O5—H5A0.89 (2)
Mo1—N11.754 (4)O5—H5B0.87 (2)
Mo1—O31.900 (3)O5—H5C0.87 (2)
Mo1—O41.919 (3)O6—C61.417 (5)
Mo1—O52.269 (4)C6—H6A0.9600
Mo1—O62.170 (3)C6—H6B0.9600
Mo1—O72.046 (3)C6—H6C0.9600
Mo2—N21.760 (4)O7—C71.425 (5)
Mo2—O62.049 (3)C7—H7A0.9600
Mo2—O72.170 (3)C7—H7B0.9600
Mo2—O81.939 (3)C7—H7C0.9600
Mo2—O91.891 (3)O8—C81.410 (6)
Mo2—O102.274 (4)C8—H8A0.9600
N1—O11.220 (5)C8—H8B0.9600
N2—O21.214 (5)C8—H8C0.9600
O3—C31.423 (5)O9—C91.418 (5)
C3—H3A0.9600C9—H9A0.9600
C3—H3B0.9600C9—H9B0.9600
C3—H3C0.9600C9—H9C0.9600
O4—C41.402 (5)O10—H10A0.89 (2)
C4—H4A0.9600O10—H10B0.87 (2)
C4—H4B0.9600O10—H10C0.88 (2)
C4—H4C0.9600
N1—Mo1—O397.48 (15)H4B—C4—H4C109.5
N1—Mo1—O498.96 (15)Mo1—O5—H5A110 (6)
O3—Mo1—O499.75 (14)Mo1—O5—H5B111 (10)
N1—Mo1—O591.86 (16)H5A—O5—H5B108 (10)
O3—Mo1—O584.29 (15)Mo1—O5—H5C117 (10)
O4—Mo1—O5167.81 (13)H5A—O5—H5C111 (10)
O7—Mo1—O579.93 (13)H5B—O5—H5C99 (10)
O6—Mo1—O582.13 (13)C6—O6—Mo2125.0 (2)
N1—Mo1—O6170.28 (14)C6—O6—Mo1125.5 (2)
O3—Mo1—O689.56 (12)Mo2—O6—Mo1107.06 (12)
O4—Mo1—O686.38 (12)O6—C6—H6A109.5
O7—Mo1—O672.90 (11)O6—C6—H6B109.5
N1—Mo1—O798.60 (14)H6A—C6—H6B109.5
O3—Mo1—O7157.76 (13)O6—C6—H6C109.5
O4—Mo1—O792.82 (12)H6A—C6—H6C109.5
N2—Mo2—O697.39 (14)H6B—C6—H6C109.5
O9—Mo2—O6155.87 (13)C7—O7—Mo1126.3 (3)
O8—Mo2—O693.05 (12)C7—O7—Mo2126.0 (2)
N2—Mo2—O7169.55 (14)Mo1—O7—Mo2107.17 (12)
O9—Mo2—O788.62 (12)O7—C7—H7A109.5
O8—Mo2—O785.31 (12)O7—C7—H7B109.5
O6—Mo2—O772.85 (11)H7A—C7—H7B109.5
N2—Mo2—O899.19 (15)O7—C7—H7C109.5
O9—Mo2—O8100.86 (14)H7A—C7—H7C109.5
N2—Mo2—O999.69 (15)H7B—C7—H7C109.5
N2—Mo2—O1090.14 (15)C8—O8—Mo2127.5 (3)
O9—Mo2—O1084.10 (14)O8—C8—H8A109.5
O8—Mo2—O10168.46 (13)O8—C8—H8B109.5
O6—Mo2—O1078.93 (12)H8A—C8—H8B109.5
O7—Mo2—O1084.40 (13)O8—C8—H8C109.5
O1—N1—Mo1176.7 (3)H8A—C8—H8C109.5
O2—N2—Mo2175.2 (3)H8B—C8—H8C109.5
C3—O3—Mo1127.2 (3)C9—O9—Mo2130.1 (3)
O3—C3—H3A109.5O9—C9—H9A109.5
O3—C3—H3B109.5O9—C9—H9B109.5
H3A—C3—H3B109.5H9A—C9—H9B109.5
O3—C3—H3C109.5O9—C9—H9C109.5
H3A—C3—H3C109.5H9A—C9—H9C109.5
H3B—C3—H3C109.5H9B—C9—H9C109.5
C4—O4—Mo1129.2 (3)Mo2—O10—H10A107 (5)
O4—C4—H4A109.5Mo2—O10—H10B112 (10)
O4—C4—H4B109.5H10A—O10—H10B113 (10)
H4A—C4—H4B109.5Mo2—O10—H10C120 (10)
O4—C4—H4C109.5H10A—O10—H10C108 (10)
H4A—C4—H4C109.5H10B—O10—H10C97 (10)
N1—Mo1—O3—C30.0 (4)O3—Mo1—O7—C7131.3 (4)
O4—Mo1—O3—C3100.5 (4)O4—Mo1—O7—C7104.0 (3)
O7—Mo1—O3—C3136.0 (4)O6—Mo1—O7—C7170.7 (4)
O6—Mo1—O3—C3173.2 (4)O5—Mo1—O7—C785.9 (3)
O5—Mo1—O3—C391.1 (4)N1—Mo1—O7—Mo2176.42 (15)
N1—Mo1—O4—C46.2 (4)O3—Mo1—O7—Mo240.6 (4)
O3—Mo1—O4—C493.0 (4)O4—Mo1—O7—Mo284.08 (14)
O7—Mo1—O4—C4105.4 (4)O6—Mo1—O7—Mo21.26 (11)
O6—Mo1—O4—C4178.1 (4)O5—Mo1—O7—Mo286.05 (15)
O5—Mo1—O4—C4158.5 (6)N2—Mo2—O7—C7168.0 (7)
N2—Mo2—O6—C612.2 (3)O9—Mo2—O7—C725.1 (3)
O9—Mo2—O6—C6122.6 (4)O8—Mo2—O7—C776.0 (3)
O8—Mo2—O6—C6111.9 (3)O6—Mo2—O7—C7170.6 (3)
O7—Mo2—O6—C6164.0 (3)O10—Mo2—O7—C7109.3 (3)
O10—Mo2—O6—C676.5 (3)N2—Mo2—O7—Mo120.0 (8)
N2—Mo2—O6—Mo1174.92 (15)O9—Mo2—O7—Mo1162.99 (15)
O9—Mo2—O6—Mo140.1 (4)O8—Mo2—O7—Mo195.99 (14)
O8—Mo2—O6—Mo185.39 (14)O6—Mo2—O7—Mo11.33 (11)
O7—Mo2—O6—Mo11.26 (11)O10—Mo2—O7—Mo178.79 (15)
O10—Mo2—O6—Mo186.24 (15)N2—Mo2—O8—C89.3 (4)
O3—Mo1—O6—C629.9 (3)O9—Mo2—O8—C8111.1 (4)
O4—Mo1—O6—C669.9 (3)O6—Mo2—O8—C888.7 (4)
O7—Mo1—O6—C6164.0 (3)O7—Mo2—O8—C8161.2 (4)
O5—Mo1—O6—C6114.2 (3)O10—Mo2—O8—C8134.2 (7)
O3—Mo1—O6—Mo2167.46 (15)N2—Mo2—O9—C98.2 (4)
O4—Mo1—O6—Mo292.74 (15)O8—Mo2—O9—C9109.6 (4)
O7—Mo1—O6—Mo21.33 (11)O6—Mo2—O9—C9126.2 (4)
O5—Mo1—O6—Mo283.16 (15)O7—Mo2—O9—C9165.4 (4)
N1—Mo1—O7—C74.5 (4)O10—Mo2—O9—C980.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.89 (2)2.24 (6)2.991 (5)142 (8)
O5—H5B···O2i0.87 (2)2.31 (6)3.156 (5)165 (20)
O5—H5C···O1ii0.87 (2)2.29 (11)3.081 (5)150 (20)
O10—H10A···O40.89 (2)2.06 (3)2.929 (5)163 (7)
O10—H10C···O8iii0.88 (2)2.41 (5)3.266 (5)166 (15)
O10—H10B···O1iv0.87 (2)2.46 (11)3.212 (5)145 (15)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2(CH3O)6(NO)2(H2O)2]
Mr474.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)8.7567 (13), 15.6682 (17), 12.5488 (18)
β (°) 106.750 (16)
V3)1648.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.5 × 0.45 × 0.43
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.522, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
19216, 3874, 3240
Rint0.085
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.128, 1.11
No. of reflections3874
No. of parameters207
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 1.21

Computer programs: IPDS Software (Stoe & Cie, 1998), X-RED (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Mo1—Mo23.3933 (7)Mo2—O91.891 (3)
Mo1—N11.754 (4)Mo2—O102.274 (4)
Mo1—O31.900 (3)N1—O11.220 (5)
Mo1—O41.919 (3)N2—O21.214 (5)
Mo1—O52.269 (4)O3—C31.423 (5)
Mo1—O62.170 (3)O4—C41.402 (5)
Mo1—O72.046 (3)O6—C61.417 (5)
Mo2—N21.760 (4)O7—C71.425 (5)
Mo2—O62.049 (3)O8—C81.410 (6)
Mo2—O72.170 (3)O9—C91.418 (5)
Mo2—O81.939 (3)
N1—Mo1—O397.48 (15)O6—Mo2—O772.85 (11)
N1—Mo1—O498.96 (15)N2—Mo2—O899.19 (15)
O3—Mo1—O499.75 (14)O9—Mo2—O8100.86 (14)
N1—Mo1—O591.86 (16)N2—Mo2—O999.69 (15)
O3—Mo1—O584.29 (15)N2—Mo2—O1090.14 (15)
O4—Mo1—O5167.81 (13)O9—Mo2—O1084.10 (14)
O7—Mo1—O579.93 (13)O8—Mo2—O10168.46 (13)
O6—Mo1—O582.13 (13)O6—Mo2—O1078.93 (12)
N1—Mo1—O6170.28 (14)O7—Mo2—O1084.40 (13)
O3—Mo1—O689.56 (12)O1—N1—Mo1176.7 (3)
O4—Mo1—O686.38 (12)O2—N2—Mo2175.2 (3)
O7—Mo1—O672.90 (11)C3—O3—Mo1127.2 (3)
N1—Mo1—O798.60 (14)C4—O4—Mo1129.2 (3)
O3—Mo1—O7157.76 (13)C6—O6—Mo2125.0 (2)
O4—Mo1—O792.82 (12)C6—O6—Mo1125.5 (2)
N2—Mo2—O697.39 (14)Mo2—O6—Mo1107.06 (12)
O9—Mo2—O6155.87 (13)C7—O7—Mo1126.3 (3)
O8—Mo2—O693.05 (12)C7—O7—Mo2126.0 (2)
N2—Mo2—O7169.55 (14)Mo1—O7—Mo2107.17 (12)
O9—Mo2—O788.62 (12)C8—O8—Mo2127.5 (3)
O8—Mo2—O785.31 (12)C9—O9—Mo2130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.89 (2)2.24 (6)2.991 (5)142 (8)
O5—H5B···O2i0.87 (2)2.31 (6)3.156 (5)165 (20)
O5—H5C···O1ii0.87 (2)2.29 (11)3.081 (5)150 (20)
O10—H10A···O40.89 (2)2.06 (3)2.929 (5)163 (7)
O10—H10C···O8iii0.88 (2)2.41 (5)3.266 (5)166 (15)
O10—H10B···O1iv0.87 (2)2.46 (11)3.212 (5)145 (15)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds