Download citation
Download citation
link to html
In the mol­ecule of the title compound, C13H11N3O2, an intra­molecular O—H...N hydrogen bond forms a six-membered ring. Inter­molecular N—H...N hydrogen bonds connect adjacent mol­ecules to form a zigzag chain parallel to the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055730/dn2264sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055730/dn2264Isup2.hkl
Contains datablock I

CCDC reference: 672886

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.104
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The hydrazones fluorescence reagents have good chemical stability and were simply bonded with metal cations (Lee et al., 2003; Tang et al., 2003), therefore the study of complexes characteristic fluorescence response can give support to the cations detection. Here we synthesized the title compound.

The whole molecule is non-planar with a dihedral angle of 21.37 (1)° between the pyridine ring A (N1/C1–C5) and the benzene ring B (C8–C13). There is an intramolecular hydrogen bond O2–H2A···N3, forming a six-numbered ring (Fig. 1). Bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, the molecules are connected throughmolecules are N—H···N intermolecular hydrogen bonds (Table 1) forming a zigzag like chain parallel to the c axis (Fig. 2)

Related literature top

For related literature, see: Lee et al. (2003); Tang et al. (2003). For reference bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of Salicylaldehyde (2.1 ml, 0.02 mol) was added dropwise a solution of isoniazide (1.4 g, 0.01 mol) in dry EtOH (30 ml), and the mixture was stirred at 356 K for 2.5 h. After cooling to room temperature, some yellow solid appeared. Then the resulting yellow solid was filtered off, washed with dry EtOH, dried, and recrystallized from dry EtOH. Yellow single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a dry EtOH solution over a period of 5 d.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (C), N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C,N or O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed line.
[Figure 2] Fig. 2. Partial packing view of compound (I), showing the formation of chains along [010] built from hydrogen bonds shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [symmetry codes: (i) x, -y + 1/2, z + 1/2].
(E)-N-(2-Hydroxybenzylidene)isonicotinohydrazide top
Crystal data top
C13H11N3O2F(000) = 504
Mr = 241.25Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2790 reflections
a = 8.1467 (12) Åθ = 2.6–25.7°
b = 15.562 (2) ŵ = 0.10 mm1
c = 10.7457 (12) ÅT = 293 K
β = 121.147 (8)°Plate, colourless
V = 1165.9 (3) Å30.29 × 0.22 × 0.09 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2212 independent reflections
Radiation source: fine-focus sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.33 pixels mm-1θmax = 25.7°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1814
Tmin = 0.968, Tmax = 0.989l = 1312
6268 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1742P]
where P = (Fo2 + 2Fc2)/3
2212 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H11N3O2V = 1165.9 (3) Å3
Mr = 241.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1467 (12) ŵ = 0.10 mm1
b = 15.562 (2) ÅT = 293 K
c = 10.7457 (12) Å0.29 × 0.22 × 0.09 mm
β = 121.147 (8)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1908 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.989Rint = 0.014
6268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2212 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11674 (17)0.24122 (7)0.19619 (12)0.0453 (3)
N20.19855 (16)0.43183 (7)0.60543 (11)0.0418 (3)
H20.15780.38250.61400.050*
N30.24356 (15)0.49509 (7)0.70680 (11)0.0408 (3)
O10.26941 (17)0.51914 (6)0.47109 (12)0.0610 (3)
O20.39390 (16)0.64334 (6)0.82295 (12)0.0551 (3)
H2B0.36050.60420.76360.083*
C10.05708 (19)0.30830 (8)0.36987 (14)0.0423 (3)
H10.00650.30680.42100.051*
C20.0297 (2)0.24389 (9)0.27236 (14)0.0455 (3)
H2A0.05470.19970.25910.055*
C30.2340 (2)0.30658 (9)0.21573 (15)0.0467 (3)
H30.29490.30670.16260.056*
C40.2702 (2)0.37406 (8)0.31032 (14)0.0440 (3)
H40.35340.41810.32020.053*
C50.18043 (18)0.37496 (8)0.39010 (13)0.0379 (3)
C60.22024 (19)0.44935 (8)0.49115 (14)0.0412 (3)
C70.22300 (19)0.47889 (8)0.81433 (14)0.0404 (3)
H70.17630.42560.82090.048*
C80.27183 (17)0.54288 (8)0.92658 (13)0.0373 (3)
C90.35359 (18)0.62208 (8)0.92655 (14)0.0409 (3)
C100.3940 (2)0.68162 (9)1.03475 (16)0.0537 (4)
H100.44570.73471.03370.064*
C110.3581 (2)0.66285 (10)1.14385 (17)0.0567 (4)
H110.38560.70341.21560.068*
C120.2820 (2)0.58455 (10)1.14758 (16)0.0533 (4)
H120.25990.57171.22230.064*
C130.2388 (2)0.52549 (9)1.03945 (15)0.0459 (3)
H130.18650.47281.04160.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0559 (7)0.0423 (6)0.0423 (6)0.0011 (5)0.0287 (6)0.0024 (5)
N20.0562 (7)0.0343 (6)0.0381 (6)0.0009 (5)0.0266 (5)0.0033 (4)
N30.0482 (6)0.0375 (6)0.0376 (6)0.0024 (5)0.0227 (5)0.0026 (4)
O10.0929 (8)0.0444 (6)0.0648 (7)0.0139 (5)0.0542 (7)0.0072 (5)
O20.0708 (7)0.0458 (6)0.0601 (7)0.0115 (5)0.0420 (6)0.0012 (5)
C10.0482 (8)0.0455 (7)0.0397 (7)0.0009 (6)0.0274 (6)0.0011 (6)
C20.0510 (8)0.0429 (7)0.0457 (8)0.0045 (6)0.0273 (7)0.0016 (6)
C30.0601 (9)0.0456 (8)0.0487 (8)0.0028 (6)0.0382 (7)0.0016 (6)
C40.0551 (8)0.0388 (7)0.0466 (8)0.0011 (6)0.0323 (7)0.0018 (6)
C50.0446 (7)0.0362 (7)0.0332 (6)0.0060 (5)0.0203 (6)0.0044 (5)
C60.0470 (7)0.0386 (7)0.0404 (7)0.0007 (6)0.0244 (6)0.0002 (5)
C70.0475 (7)0.0343 (7)0.0422 (7)0.0008 (5)0.0253 (6)0.0006 (5)
C80.0393 (7)0.0352 (7)0.0377 (7)0.0041 (5)0.0201 (6)0.0003 (5)
C90.0413 (7)0.0378 (7)0.0424 (7)0.0021 (5)0.0208 (6)0.0020 (5)
C100.0599 (9)0.0386 (8)0.0555 (9)0.0052 (6)0.0248 (8)0.0075 (6)
C110.0647 (10)0.0520 (9)0.0476 (8)0.0064 (7)0.0250 (8)0.0128 (7)
C120.0653 (9)0.0567 (9)0.0459 (8)0.0091 (7)0.0342 (7)0.0015 (7)
C130.0541 (8)0.0430 (8)0.0471 (8)0.0014 (6)0.0307 (7)0.0006 (6)
Geometric parameters (Å, º) top
N1—C21.3323 (17)C4—C51.3853 (18)
N1—C31.3357 (18)C4—H40.9300
N2—C61.3558 (17)C5—C61.5034 (18)
N2—N31.3699 (15)C7—C81.4521 (17)
N2—H20.8600C7—H70.9300
N3—C71.2756 (16)C8—C131.3978 (18)
O1—C61.2148 (16)C8—C91.4009 (18)
O2—C91.3546 (16)C9—C101.3867 (19)
O2—H2B0.8200C10—C111.378 (2)
C1—C51.3809 (19)C10—H100.9300
C1—C21.3822 (18)C11—C121.377 (2)
C1—H10.9300C11—H110.9300
C2—H2A0.9300C12—C131.3770 (19)
C3—C41.3830 (19)C12—H120.9300
C3—H30.9300C13—H130.9300
C2—N1—C3116.40 (11)N2—C6—C5114.76 (11)
C6—N2—N3117.97 (11)N3—C7—C8120.60 (12)
C6—N2—H2121.0N3—C7—H7119.7
N3—N2—H2121.0C8—C7—H7119.7
C7—N3—N2118.14 (11)C13—C8—C9118.38 (12)
C9—O2—H2B109.5C13—C8—C7119.66 (12)
C5—C1—C2118.88 (12)C9—C8—C7121.95 (11)
C5—C1—H1120.6O2—C9—C10118.20 (12)
C2—C1—H1120.6O2—C9—C8122.17 (12)
N1—C2—C1124.04 (12)C10—C9—C8119.63 (13)
N1—C2—H2A118.0C11—C10—C9120.58 (14)
C1—C2—H2A118.0C11—C10—H10119.7
N1—C3—C4123.84 (12)C9—C10—H10119.7
N1—C3—H3118.1C12—C11—C10120.61 (13)
C4—C3—H3118.1C12—C11—H11119.7
C3—C4—C5118.84 (12)C10—C11—H11119.7
C3—C4—H4120.6C13—C12—C11119.22 (14)
C5—C4—H4120.6C13—C12—H12120.4
C1—C5—C4117.98 (12)C11—C12—H12120.4
C1—C5—C6124.03 (11)C12—C13—C8121.55 (13)
C4—C5—C6117.97 (12)C12—C13—H13119.2
O1—C6—N2123.36 (12)C8—C13—H13119.2
O1—C6—C5121.87 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N30.821.892.6076 (15)146
N2—H2···N1i0.862.213.0530 (15)165
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O2
Mr241.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1467 (12), 15.562 (2), 10.7457 (12)
β (°) 121.147 (8)
V3)1165.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.22 × 0.09
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6268, 2212, 1908
Rint0.014
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.07
No. of reflections2212
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N30.821.892.6076 (15)146.0
N2—H2···N1i0.862.213.0530 (15)164.8
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds