Download citation
Download citation
link to html
The NiII atom in the title complex, [Ni(C17H17ClNO)2], is tetra­coordinated by two N atoms and two O atoms from two bidentate salicylideneiminate ligands, forming a square-planar environment. The asymmetric unit consists of two half-molecules; in each molecule the Ni atom lies on a centre of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060680/gk2118sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060680/gk2118Isup2.hkl
Contains datablock I

CCDC reference: 672763

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.058
  • wR factor = 0.160
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.583 0.983 Tmin(prime) and Tmax expected: 0.772 0.983 RR(prime) = 0.755 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.75 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C15 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C16 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C17 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C25 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C33 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C34 PLAT413_ALERT_2_C Short Inter XH3 .. XHn H16C .. H32B .. 2.14 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C34 H34 Cl2 N2 Ni O2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Polymerization of olefins with nickel based catalysts has attracted intensive attention recently because they can catalyze not only the polymerization of olefins but also co-polymerization of ethylene with olefins containing functional groups (Zhang et al., 2003; Diamanti et al., 2003; Sun et al., 2003; Dennett et al., 2004). Single-component nickel salicylaldimine complexes have shown great activity toward polymerization of ethylene with very low number of branches in the absence of cocatalysts at low temperatures and pressures (Younkin et al., 2000). Most recently, several examples of nickel-salicylideneimines type catalysts used for olefin polymerization in the presence or absence of cocatalysts are reported (Wang et al., 1998; Bauers & Mecking, 2001a,b; Hu et al., 2005; Lee et al., 2001). We report herein the synthesis and crystal structure of a nickel salicylideneimine complex (I), a potential catalyst for olefin polymerization.

The solid structure of (I) reveals a monomeric centrosymmetric NiII complex (Fig. 1) in which the geometry around NiII atom is an ideal square-palnar. The metal atom is coordinated by two bidentate ligands with the two oxygen and two nitrogen atoms positioned trans. The NiN2O2 units are coplanar and the Ni–N and Ni–O bond distances are similar to those reported for salicylaldimine nickel(II) complexes (Chang et al., 2004). The dihedral angles between the mesityl substituent and the benzene ring are 54.99 (0.16) and 63.70 (0.15) Å in the two symmetry independent molecules.

Related literature top

For information on applications of nickel-based catalysts in polymerization of olefins, see: Bauers & Mecking (2001a,b); Chang et al. (2004); Dennett et al. (2004); Diamanti et al. (2003); Hu et al. (2005); Lee et al. (2001); Sun et al. (2003); Wang et al. (1998); Younkin et al. (2000); Zhang et al. (2003).

Experimental top

The ligand, 4-chloro-2-[1-(2,4,6-trimethylphenylimino)ethyl]phenol was prepared by the reaction of 5-chloro-2-hydroxyacetophenone (50 mmol) with 2,4,6-trimethylaniline (50 mmol) in refluxed 1-butanol (50 ml) for 2 day. The mixture, which was evaporated to dryness, afforded yellow liquid. The residue was purified by column chromatography (silica gel, ethyl acetate/hexane=1:12) and the desired fraction was collected. The volatile materials were removed under vacuum to give a yellow oil. The title complex was synthesized by the following procedures. Nickel(II) bromide (2 mmol) was refluxed in THF for 2 days and and solution was evaporeted to dryness. A mixture of 4-chloro-2-[1-(2,4,6-trimethyl-phenylimino)-ethyl]-phenol (2 mmol) and triethyl amine (2 mmol) in toluene (20 ml) was added. The resulting mixture was refluxed for 3 h while the solution color changed from yellow to green slowly. The mixture was filtered through celite and the filtrate was allowed to stand at room temperature for 2 days, yielding green crystals.

Refinement top

All non-H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with displacement ellipsoids shown at the 20% probability level. Hydrogen atoms have been removed for clarity. The atoms designated with the A letter have been genereted by symmetry operations: (i) -x, -y + 1, -z (for the molecule with Ni1) (II) -x + 1, -y - 1, -z - 1 (for the molecule with the Ni2 atom).
Bis{4-chloro-2-[1-(2,4,6-trimethylphenylimino)ethyl]phenolato}nickel(II) top
Crystal data top
[Ni(C17H17ClNO)2]Z = 2
Mr = 632.24F(000) = 660
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1181 (16) ÅCell parameters from 2140 reflections
b = 11.2882 (16) Åθ = 2.5–25.5°
c = 12.4119 (17) ŵ = 0.85 mm1
α = 84.730 (3)°T = 298 K
β = 88.689 (3)°Parallelpiped, green
γ = 79.574 (3)°0.30 × 0.20 × 0.02 mm
V = 1525.5 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5935 independent reflections
Radiation source: fine-focus sealed tube3446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.583, Tmax = 0.983k = 137
8811 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
5935 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni(C17H17ClNO)2]γ = 79.574 (3)°
Mr = 632.24V = 1525.5 (4) Å3
Triclinic, P1Z = 2
a = 11.1181 (16) ÅMo Kα radiation
b = 11.2882 (16) ŵ = 0.85 mm1
c = 12.4119 (17) ÅT = 298 K
α = 84.730 (3)°0.30 × 0.20 × 0.02 mm
β = 88.689 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3446 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.983Rint = 0.037
8811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.69 e Å3
5935 reflectionsΔρmin = 0.65 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.0384 (2)
Ni20.50000.50000.50000.0375 (2)
Cl10.50884 (12)0.14354 (16)0.25696 (12)0.0778 (5)
Cl20.08634 (13)0.04318 (11)0.36364 (12)0.0655 (4)
O10.1654 (3)0.4851 (3)0.0199 (3)0.0500 (8)
O20.4906 (3)0.3400 (3)0.5115 (3)0.0535 (9)
N10.0102 (3)0.3286 (3)0.0098 (3)0.0363 (8)
N20.3306 (3)0.4898 (3)0.5373 (3)0.0355 (8)
C10.2400 (4)0.4049 (4)0.0402 (4)0.0418 (11)
C20.3525 (4)0.4330 (4)0.0702 (4)0.0512 (12)
H2A0.37160.50780.04590.061*
C30.4343 (4)0.3531 (5)0.1343 (4)0.0518 (12)
H3A0.50730.37430.15390.062*
C40.4081 (4)0.2413 (5)0.1697 (4)0.0475 (12)
C50.3030 (4)0.2071 (4)0.1394 (3)0.0428 (11)
H5A0.28810.13040.16270.051*
C60.2174 (4)0.2863 (4)0.0737 (3)0.0375 (10)
C70.1066 (4)0.2486 (4)0.0392 (3)0.0380 (10)
C80.1094 (4)0.1150 (4)0.0370 (4)0.0541 (13)
H8A0.03140.10180.01390.081*
H8B0.12670.07530.10820.081*
H8C0.17180.08260.01240.081*
C90.0976 (4)0.2846 (3)0.0210 (3)0.0366 (10)
C100.1735 (4)0.2435 (4)0.0600 (4)0.0407 (10)
C110.2745 (4)0.1995 (4)0.0290 (4)0.0498 (12)
H11A0.32390.16930.08220.060*
C120.3044 (4)0.1988 (4)0.0783 (4)0.0511 (12)
C130.2316 (4)0.2455 (4)0.1562 (4)0.0525 (13)
H13A0.25200.24750.22860.063*
C140.1271 (4)0.2902 (4)0.1292 (4)0.0442 (11)
C150.1473 (5)0.2481 (5)0.1777 (4)0.0600 (14)
H15A0.20850.21610.22120.090*
H15B0.14840.33040.19210.090*
H15C0.06820.20080.19500.090*
C160.4160 (5)0.1486 (5)0.1097 (5)0.0808 (19)
H16A0.45590.12050.04540.121*
H16B0.39050.08260.15350.121*
H16C0.47170.21110.14980.121*
C170.0524 (5)0.3460 (6)0.2156 (4)0.0708 (16)
H17A0.01500.37140.18290.106*
H17B0.10260.41470.25340.106*
H17C0.02190.28760.26570.106*
C180.3957 (4)0.2564 (4)0.4826 (4)0.0399 (10)
C190.4156 (4)0.1386 (4)0.4493 (4)0.0513 (13)
H19A0.49450.12230.45110.062*
C200.3232 (4)0.0483 (4)0.4147 (4)0.0495 (12)
H20A0.33910.02800.39110.059*
C210.2044 (4)0.0712 (4)0.4150 (4)0.0418 (11)
C220.1790 (4)0.1808 (4)0.4511 (3)0.0396 (10)
H22A0.09850.19300.45250.047*
C230.2736 (4)0.2772 (4)0.4870 (3)0.0360 (10)
C240.2467 (4)0.3940 (4)0.5284 (3)0.0341 (9)
C250.1171 (4)0.3974 (4)0.5654 (4)0.0467 (11)
H25A0.11010.47870.59120.070*
H25B0.06240.37020.50580.070*
H25C0.09620.34550.62260.070*
C260.2960 (3)0.6019 (4)0.5848 (3)0.0361 (10)
C270.3202 (4)0.6367 (4)0.6934 (4)0.0401 (10)
C280.2888 (4)0.7457 (4)0.7373 (4)0.0494 (12)
H28A0.30470.77050.80990.059*
C290.2351 (4)0.8172 (4)0.6762 (4)0.0462 (11)
C300.2135 (4)0.7802 (4)0.5685 (4)0.0466 (12)
H30A0.17760.82850.52670.056*
C310.2436 (4)0.6728 (4)0.5197 (3)0.0384 (10)
C320.3804 (5)0.5604 (5)0.7617 (4)0.0590 (14)
H32A0.39590.48970.71830.089*
H32B0.45630.60650.78920.089*
H32C0.32740.53630.82090.089*
C330.1986 (5)0.9327 (5)0.7254 (5)0.0765 (18)
H33A0.21990.94490.80060.115*
H33B0.24070.99950.68860.115*
H33C0.11190.92730.71820.115*
C340.2249 (4)0.6390 (5)0.4010 (4)0.0523 (12)
H34A0.25010.56290.38150.078*
H34B0.13990.63230.38420.078*
H34C0.27260.70010.36110.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0347 (4)0.0269 (4)0.0531 (5)0.0055 (3)0.0023 (4)0.0007 (4)
Ni20.0260 (4)0.0300 (4)0.0571 (5)0.0074 (3)0.0046 (4)0.0031 (4)
Cl10.0442 (7)0.1086 (12)0.0753 (9)0.0167 (8)0.0177 (6)0.0308 (9)
Cl20.0684 (9)0.0410 (7)0.0836 (10)0.0032 (6)0.0288 (7)0.0064 (7)
O10.0359 (17)0.0294 (16)0.083 (2)0.0067 (14)0.0013 (16)0.0076 (16)
O20.0278 (16)0.0321 (17)0.101 (3)0.0062 (14)0.0074 (16)0.0083 (18)
N10.0326 (19)0.0323 (19)0.043 (2)0.0059 (16)0.0053 (16)0.0036 (16)
N20.0331 (19)0.0270 (18)0.048 (2)0.0102 (16)0.0018 (16)0.0001 (16)
C10.036 (2)0.036 (2)0.053 (3)0.006 (2)0.004 (2)0.006 (2)
C20.040 (3)0.040 (3)0.078 (4)0.014 (2)0.002 (2)0.010 (3)
C30.035 (3)0.061 (3)0.065 (3)0.017 (2)0.004 (2)0.017 (3)
C40.038 (3)0.057 (3)0.046 (3)0.007 (2)0.005 (2)0.001 (2)
C50.040 (2)0.041 (3)0.048 (3)0.013 (2)0.004 (2)0.006 (2)
C60.034 (2)0.034 (2)0.045 (3)0.0071 (19)0.0012 (19)0.004 (2)
C70.039 (2)0.030 (2)0.045 (3)0.007 (2)0.000 (2)0.004 (2)
C80.050 (3)0.031 (2)0.081 (4)0.008 (2)0.007 (3)0.004 (3)
C90.036 (2)0.022 (2)0.051 (3)0.0017 (18)0.010 (2)0.0029 (19)
C100.042 (3)0.032 (2)0.048 (3)0.009 (2)0.008 (2)0.003 (2)
C110.042 (3)0.038 (3)0.069 (3)0.011 (2)0.003 (2)0.003 (2)
C120.039 (3)0.041 (3)0.074 (4)0.005 (2)0.014 (3)0.011 (3)
C130.053 (3)0.053 (3)0.051 (3)0.001 (2)0.014 (2)0.016 (3)
C140.047 (3)0.040 (3)0.044 (3)0.003 (2)0.004 (2)0.005 (2)
C150.068 (4)0.065 (4)0.047 (3)0.019 (3)0.002 (3)0.004 (3)
C160.057 (3)0.075 (4)0.118 (5)0.022 (3)0.029 (3)0.021 (4)
C170.066 (4)0.096 (5)0.049 (3)0.013 (3)0.003 (3)0.001 (3)
C180.035 (2)0.032 (2)0.055 (3)0.008 (2)0.001 (2)0.009 (2)
C190.042 (3)0.037 (3)0.077 (4)0.015 (2)0.013 (3)0.007 (3)
C200.055 (3)0.029 (2)0.064 (3)0.009 (2)0.008 (2)0.001 (2)
C210.047 (3)0.030 (2)0.048 (3)0.007 (2)0.008 (2)0.003 (2)
C220.035 (2)0.038 (2)0.047 (3)0.010 (2)0.005 (2)0.005 (2)
C230.033 (2)0.033 (2)0.042 (2)0.0062 (19)0.0027 (19)0.008 (2)
C240.029 (2)0.032 (2)0.042 (2)0.0063 (18)0.0006 (18)0.0037 (19)
C250.030 (2)0.045 (3)0.066 (3)0.010 (2)0.008 (2)0.008 (2)
C260.027 (2)0.034 (2)0.049 (3)0.0109 (18)0.0014 (19)0.004 (2)
C270.033 (2)0.040 (3)0.049 (3)0.011 (2)0.001 (2)0.004 (2)
C280.039 (3)0.058 (3)0.050 (3)0.017 (2)0.003 (2)0.017 (2)
C290.031 (2)0.042 (3)0.068 (3)0.015 (2)0.001 (2)0.000 (2)
C300.035 (2)0.038 (3)0.070 (3)0.014 (2)0.003 (2)0.014 (2)
C310.028 (2)0.038 (2)0.051 (3)0.0104 (19)0.0019 (19)0.005 (2)
C320.062 (3)0.065 (3)0.055 (3)0.025 (3)0.014 (3)0.001 (3)
C330.069 (4)0.046 (3)0.114 (5)0.024 (3)0.008 (3)0.023 (3)
C340.053 (3)0.057 (3)0.050 (3)0.017 (2)0.001 (2)0.009 (3)
Geometric parameters (Å, º) top
Ni1—O1i1.829 (3)C15—H15B0.9600
Ni1—O11.829 (3)C15—H15C0.9600
Ni1—N11.910 (3)C16—H16A0.9600
Ni1—N1i1.910 (3)C16—H16B0.9600
Ni2—O2ii1.809 (3)C16—H16C0.9600
Ni2—O21.809 (3)C17—H17A0.9600
Ni2—N2ii1.915 (3)C17—H17B0.9600
Ni2—N21.915 (3)C17—H17C0.9600
Cl1—C41.742 (5)C18—C191.411 (6)
Cl2—C211.752 (4)C18—C231.418 (5)
O1—C11.303 (5)C19—C201.356 (6)
O2—C181.313 (5)C19—H19A0.9300
N1—C71.306 (5)C20—C211.391 (6)
N1—C91.450 (5)C20—H20A0.9300
N2—C241.293 (5)C21—C221.353 (6)
N2—C261.458 (5)C22—C231.416 (6)
C1—C21.410 (6)C22—H22A0.9300
C1—C61.429 (6)C23—C241.451 (5)
C2—C31.370 (7)C24—C251.508 (5)
C2—H2A0.9300C25—H25A0.9600
C3—C41.377 (6)C25—H25B0.9600
C3—H3A0.9300C25—H25C0.9600
C4—C51.366 (6)C26—C271.387 (6)
C5—C61.402 (6)C26—C311.393 (6)
C5—H5A0.9300C27—C281.398 (6)
C6—C71.460 (6)C27—C321.509 (6)
C7—C81.506 (6)C28—C291.375 (6)
C8—H8A0.9600C28—H28A0.9300
C8—H8B0.9600C29—C301.377 (6)
C8—H8C0.9600C29—C331.506 (6)
C9—C141.383 (6)C30—C311.397 (6)
C9—C101.399 (6)C30—H30A0.9300
C10—C111.383 (6)C31—C341.498 (6)
C10—C151.503 (6)C32—H32A0.9600
C11—C121.381 (7)C32—H32B0.9600
C11—H11A0.9300C32—H32C0.9600
C12—C131.376 (7)C33—H33A0.9600
C12—C161.526 (6)C33—H33B0.9600
C13—C141.406 (6)C33—H33C0.9600
C13—H13A0.9300C34—H34A0.9600
C14—C171.504 (7)C34—H34B0.9600
C15—H15A0.9600C34—H34C0.9600
O1i—Ni1—O1180.0 (2)H16A—C16—H16B109.5
O1i—Ni1—N188.41 (13)C12—C16—H16C109.5
O1—Ni1—N191.59 (13)H16A—C16—H16C109.5
O1i—Ni1—N1i91.59 (13)H16B—C16—H16C109.5
O1—Ni1—N1i88.41 (13)C14—C17—H17A109.5
N1—Ni1—N1i180.0C14—C17—H17B109.5
O2ii—Ni2—O2180.0H17A—C17—H17B109.5
O2ii—Ni2—N2ii91.27 (13)C14—C17—H17C109.5
O2—Ni2—N2ii88.73 (13)H17A—C17—H17C109.5
O2ii—Ni2—N288.73 (13)H17B—C17—H17C109.5
O2—Ni2—N291.27 (13)O2—C18—C19118.4 (4)
N2ii—Ni2—N2180.00 (5)O2—C18—C23123.5 (4)
C1—O1—Ni1120.3 (3)C19—C18—C23118.0 (4)
C18—O2—Ni2124.6 (3)C20—C19—C18122.1 (4)
C7—N1—C9117.7 (3)C20—C19—H19A119.0
C7—N1—Ni1125.5 (3)C18—C19—H19A119.0
C9—N1—Ni1116.7 (2)C19—C20—C21119.2 (4)
C24—N2—C26117.7 (3)C19—C20—H20A120.4
C24—N2—Ni2126.8 (3)C21—C20—H20A120.4
C26—N2—Ni2115.4 (3)C22—C21—C20121.3 (4)
O1—C1—C2119.0 (4)C22—C21—Cl2119.6 (4)
O1—C1—C6123.6 (4)C20—C21—Cl2119.1 (3)
C2—C1—C6117.3 (4)C21—C22—C23120.8 (4)
C3—C2—C1121.8 (4)C21—C22—H22A119.6
C3—C2—H2A119.1C23—C22—H22A119.6
C1—C2—H2A119.1C22—C23—C18118.4 (4)
C2—C3—C4119.8 (4)C22—C23—C24121.1 (4)
C2—C3—H3A120.1C18—C23—C24120.5 (4)
C4—C3—H3A120.1N2—C24—C23121.7 (4)
C5—C4—C3121.0 (4)N2—C24—C25121.4 (4)
C5—C4—Cl1119.6 (4)C23—C24—C25116.8 (4)
C3—C4—Cl1119.4 (4)C24—C25—H25A109.5
C4—C5—C6120.8 (4)C24—C25—H25B109.5
C4—C5—H5A119.6H25A—C25—H25B109.5
C6—C5—H5A119.6C24—C25—H25C109.5
C5—C6—C1119.2 (4)H25A—C25—H25C109.5
C5—C6—C7120.7 (4)H25B—C25—H25C109.5
C1—C6—C7120.1 (4)C27—C26—C31121.9 (4)
N1—C7—C6120.7 (4)C27—C26—N2118.6 (4)
N1—C7—C8121.9 (4)C31—C26—N2119.5 (4)
C6—C7—C8117.4 (4)C26—C27—C28118.0 (4)
C7—C8—H8A109.5C26—C27—C32121.1 (4)
C7—C8—H8B109.5C28—C27—C32121.0 (4)
H8A—C8—H8B109.5C29—C28—C27121.9 (4)
C7—C8—H8C109.5C29—C28—H28A119.0
H8A—C8—H8C109.5C27—C28—H28A119.0
H8B—C8—H8C109.5C28—C29—C30118.5 (4)
C14—C9—C10121.3 (4)C28—C29—C33121.3 (5)
C14—C9—N1119.6 (4)C30—C29—C33120.2 (4)
C10—C9—N1119.0 (4)C29—C30—C31122.3 (4)
C11—C10—C9118.1 (4)C29—C30—H30A118.8
C11—C10—C15120.7 (4)C31—C30—H30A118.8
C9—C10—C15121.2 (4)C26—C31—C30117.4 (4)
C12—C11—C10122.3 (5)C26—C31—C34121.8 (4)
C12—C11—H11A118.9C30—C31—C34120.7 (4)
C10—C11—H11A118.9C27—C32—H32A109.5
C13—C12—C11118.3 (4)C27—C32—H32B109.5
C13—C12—C16120.9 (5)H32A—C32—H32B109.5
C11—C12—C16120.9 (5)C27—C32—H32C109.5
C12—C13—C14121.8 (4)H32A—C32—H32C109.5
C12—C13—H13A119.1H32B—C32—H32C109.5
C14—C13—H13A119.1C29—C33—H33A109.5
C9—C14—C13118.0 (4)C29—C33—H33B109.5
C9—C14—C17121.2 (4)H33A—C33—H33B109.5
C13—C14—C17120.7 (4)C29—C33—H33C109.5
C10—C15—H15A109.5H33A—C33—H33C109.5
C10—C15—H15B109.5H33B—C33—H33C109.5
H15A—C15—H15B109.5C31—C34—H34A109.5
C10—C15—H15C109.5C31—C34—H34B109.5
H15A—C15—H15C109.5H34A—C34—H34B109.5
H15B—C15—H15C109.5C31—C34—H34C109.5
C12—C16—H16A109.5H34A—C34—H34C109.5
C12—C16—H16B109.5H34B—C34—H34C109.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C17H17ClNO)2]
Mr632.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.1181 (16), 11.2882 (16), 12.4119 (17)
α, β, γ (°)84.730 (3), 88.689 (3), 79.574 (3)
V3)1525.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.583, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8811, 5935, 3446
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.01
No. of reflections5935
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.65

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Selected geometric parameters (Å, º) top
Ni1—O11.829 (3)Ni2—O21.809 (3)
Ni1—N11.910 (3)Ni2—N21.915 (3)
O1i—Ni1—N188.41 (13)O2ii—Ni2—N288.73 (13)
O1—Ni1—N191.59 (13)O2—Ni2—N291.27 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds