Download citation
Download citation
link to html
In the title compound, {[Cu(C6H6N2O)2(C8H4O4)]·H2O}n, the CuII center exhibits a trans-CuN2O2 square-planar geometry arising from two O atoms of two benzene-1,2-dicarboxyl­ate (bdc) dianions and two N atoms of two isonicotinamide mol­ecules. The bdc dianions link the Cu centres into a zigzag chain. O—H...O and N—H...O hydrogen bonds generate a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060217/hb2621sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060217/hb2621Isup2.hkl
Contains datablock I

CCDC reference: 657139

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.088
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Organic amides have proved to be useful in self-assembling coordination compounds through hydrogen bonding (e.g. Bhogala et al., 2004). To augment this family, we obtained the title compound, (I), (Fig. 1), by choosing benzene-1,2-dicarboxylate, isonicotinamide and CuII as the staring materials.

Compound (I) is constructed from the basic unit [Cu(C6H6N2O)2(C8H4O4)].H2O. The CuII center shows a square planar coordination geometry, being coordinated by two N atoms of two isonicotinamide molecules and two O atoms from two benzene-1,2-dicarboxylate dianions (Table 1). Each benzene-1,2-dicarboxylate ligand bridges two CuII centers to form an infinite zigzag chain.

Hydrogen-bonding interactions generate a three-dimensional network in the crystal strcture of (I) (Table 2, Fig. 2). Thus, compound (I) can be considered as a three-dimensional supramolecular array stabilized by hydrogen-bonding interactions.

Related literature top

For related literature, see: Aakeroy et al. (2002); Abourahma et al. (2002); Bhogala et al. (2004); Eddaoudi et al. (2002); Lehn (1995). None of these references is the the list. Please supply full references for all 4 papers.

Experimental top

A mixture of CuSO4 (0.5 mmol), benzene-1,2-dicarboxylic acid (0.5 mmol), NaOH (1.0 mmol) and isonicotinamide (1.0 mmol) was heated in water/ethanol (20 ml, 1:1 v/v) mixture and continually stirred about 30 min at 333 K. The mixture was filtered and the filtrate was allowed to stand. One week later, blue blocks of (I) were obtained.

Refinement top

The water H atoms were located in a difference map and refined as riding in their as-found relative positions. The Uiso values were freely refined.

The C– and N-bound H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I) showing the local coordination environment of Cu(II) with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) x- 1/2, 1/2 - y, 1/2 + z.
[Figure 2] Fig. 2. The packing for (I). H atoms have been omitted for clarity.
Poly[[[bis(isonicotinamide)copper(II)]-µ-benzene-1,2-dicarboxylato] monohydrate] top
Crystal data top
[Cu(C6H6N2O)2(C8H4O4)]·H2OF(000) = 1004
Mr = 489.92Dx = 1.556 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3211 reflections
a = 8.023 (2) Åθ = 2.5–23.0°
b = 22.903 (6) ŵ = 1.10 mm1
c = 11.473 (3) ÅT = 293 K
β = 97.128 (3)°Block, blue
V = 2091.7 (9) Å30.38 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEX I CCD
diffractometer
4106 independent reflections
Radiation source: fine-focus sealed tube3171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.813, Tmax = 0.903k = 2828
17837 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.975P]
where P = (Fo2 + 2Fc2)/3
4106 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C6H6N2O)2(C8H4O4)]·H2OV = 2091.7 (9) Å3
Mr = 489.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.023 (2) ŵ = 1.10 mm1
b = 22.903 (6) ÅT = 293 K
c = 11.473 (3) Å0.38 × 0.16 × 0.09 mm
β = 97.128 (3)°
Data collection top
Bruker APEX I CCD
diffractometer
4106 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3171 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.903Rint = 0.047
17837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
4106 reflectionsΔρmin = 0.34 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54119 (4)0.233735 (13)0.83422 (3)0.03007 (11)
O30.6678 (2)0.17280 (7)0.76335 (15)0.0312 (4)
O20.0383 (2)0.01116 (8)0.8689 (2)0.0481 (5)
O50.9281 (3)0.22272 (9)0.57311 (18)0.0487 (5)
O60.8999 (2)0.20366 (8)0.38014 (16)0.0364 (4)
OW10.7108 (3)0.21483 (9)1.0445 (2)0.0541 (6)
HW1A0.62720.23541.06930.068 (11)*
HW1B0.80190.23891.06440.109 (17)*
O40.5213 (3)0.20936 (9)0.60265 (17)0.0460 (5)
O10.9730 (2)0.47765 (8)0.6720 (2)0.0511 (6)
N40.1684 (3)0.05588 (10)0.8562 (2)0.0434 (6)
H4A0.24540.03000.85880.052*
H4B0.19480.09230.85050.052*
N10.7024 (3)0.29483 (9)0.79177 (19)0.0314 (5)
N21.1750 (3)0.41113 (10)0.6543 (2)0.0438 (6)
H2A1.24180.43670.63090.053*
H2B1.20550.37520.66120.053*
N30.3642 (3)0.17358 (9)0.85260 (19)0.0298 (5)
C130.6209 (3)0.17375 (11)0.6516 (2)0.0315 (6)
C160.6908 (4)0.02106 (13)0.5449 (3)0.0529 (8)
H16A0.65500.01650.56040.063*
C50.7409 (3)0.38399 (12)0.6910 (3)0.0391 (7)
H5A0.69360.41580.64870.047*
C41.0243 (3)0.42715 (12)0.6799 (2)0.0357 (6)
C10.8677 (3)0.29098 (11)0.8185 (2)0.0342 (6)
H1A0.91130.25940.86340.041*
C30.9141 (3)0.37930 (11)0.7179 (2)0.0311 (6)
C80.0795 (4)0.14272 (12)0.8104 (3)0.0423 (7)
H8A0.03030.15160.77960.051*
C140.6898 (3)0.12431 (11)0.5849 (2)0.0309 (6)
C180.8577 (4)0.08515 (12)0.4431 (3)0.0429 (7)
H18A0.93140.09080.38760.051*
C90.1188 (3)0.08828 (11)0.8575 (2)0.0301 (6)
C150.6331 (4)0.06837 (12)0.6035 (3)0.0430 (7)
H15A0.55520.06250.65600.052*
C100.0085 (3)0.03971 (12)0.8608 (2)0.0348 (6)
C190.8055 (3)0.13276 (11)0.5048 (2)0.0312 (6)
C20.9782 (3)0.33170 (11)0.7827 (2)0.0344 (6)
H2C1.09350.32710.80190.041*
C110.2846 (3)0.07746 (11)0.9010 (2)0.0346 (6)
H11A0.31590.04120.93280.042*
C120.4028 (3)0.12067 (11)0.8968 (2)0.0338 (6)
H12A0.51390.11270.92590.041*
C200.8826 (3)0.19152 (11)0.4871 (3)0.0316 (6)
C70.2050 (3)0.18376 (12)0.8097 (3)0.0424 (7)
H7A0.17720.22030.77780.051*
C60.6409 (3)0.34095 (12)0.7279 (3)0.0393 (7)
H6A0.52530.34380.70790.047*
C170.8012 (4)0.02959 (13)0.4637 (3)0.0518 (8)
H17A0.83760.00200.42280.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02659 (18)0.02751 (18)0.0382 (2)0.00159 (14)0.01255 (14)0.00079 (14)
O30.0280 (10)0.0329 (10)0.0340 (11)0.0018 (8)0.0089 (8)0.0003 (8)
O20.0328 (12)0.0275 (11)0.0845 (16)0.0015 (9)0.0098 (11)0.0008 (10)
O50.0579 (14)0.0435 (12)0.0451 (13)0.0152 (10)0.0078 (10)0.0065 (10)
O60.0382 (11)0.0318 (10)0.0425 (11)0.0025 (8)0.0184 (9)0.0016 (9)
OW10.0533 (14)0.0437 (12)0.0687 (16)0.0015 (12)0.0218 (12)0.0039 (11)
O40.0449 (13)0.0430 (12)0.0478 (13)0.0133 (10)0.0033 (10)0.0019 (10)
O10.0408 (13)0.0271 (11)0.0886 (17)0.0001 (9)0.0202 (11)0.0062 (11)
N40.0260 (13)0.0307 (13)0.0737 (18)0.0010 (10)0.0072 (12)0.0092 (12)
N10.0271 (12)0.0293 (12)0.0393 (13)0.0007 (10)0.0100 (10)0.0025 (10)
N20.0298 (13)0.0299 (12)0.0738 (18)0.0033 (10)0.0151 (12)0.0074 (12)
N30.0230 (11)0.0278 (11)0.0399 (13)0.0002 (9)0.0090 (9)0.0010 (10)
C130.0240 (14)0.0312 (14)0.0401 (16)0.0065 (11)0.0070 (12)0.0002 (12)
C160.064 (2)0.0283 (16)0.065 (2)0.0086 (15)0.0030 (18)0.0004 (15)
C50.0317 (16)0.0346 (15)0.0520 (18)0.0057 (12)0.0092 (13)0.0137 (13)
C40.0297 (15)0.0312 (15)0.0465 (17)0.0051 (12)0.0054 (12)0.0009 (13)
C10.0318 (15)0.0286 (14)0.0418 (16)0.0027 (12)0.0032 (12)0.0055 (12)
C30.0295 (15)0.0263 (13)0.0383 (15)0.0021 (11)0.0072 (12)0.0015 (11)
C80.0250 (15)0.0365 (16)0.064 (2)0.0017 (12)0.0021 (13)0.0107 (14)
C140.0294 (14)0.0298 (14)0.0331 (15)0.0022 (11)0.0018 (11)0.0012 (11)
C180.0459 (18)0.0385 (17)0.0461 (18)0.0050 (14)0.0131 (14)0.0026 (14)
C90.0266 (14)0.0265 (13)0.0381 (15)0.0005 (11)0.0078 (11)0.0004 (11)
C150.0460 (18)0.0387 (17)0.0457 (18)0.0117 (14)0.0114 (14)0.0018 (14)
C100.0304 (15)0.0303 (15)0.0444 (17)0.0018 (12)0.0069 (12)0.0017 (12)
C190.0284 (15)0.0276 (14)0.0374 (15)0.0015 (11)0.0037 (12)0.0004 (12)
C20.0258 (14)0.0317 (15)0.0451 (17)0.0001 (12)0.0017 (12)0.0017 (12)
C110.0298 (15)0.0275 (14)0.0470 (17)0.0044 (11)0.0065 (12)0.0050 (12)
C120.0229 (14)0.0359 (15)0.0429 (16)0.0038 (12)0.0053 (12)0.0047 (12)
C200.0239 (14)0.0297 (14)0.0421 (17)0.0030 (11)0.0080 (12)0.0006 (12)
C70.0319 (16)0.0289 (15)0.066 (2)0.0002 (12)0.0029 (14)0.0139 (14)
C60.0240 (14)0.0426 (17)0.0526 (19)0.0024 (12)0.0095 (13)0.0123 (14)
C170.061 (2)0.0308 (16)0.065 (2)0.0040 (15)0.0106 (17)0.0119 (15)
Geometric parameters (Å, º) top
Cu1—O6i1.9409 (18)C5—C61.371 (4)
Cu1—O31.9610 (17)C5—C31.390 (4)
Cu1—N12.006 (2)C5—H5A0.9300
Cu1—N32.008 (2)C4—C31.506 (4)
O3—C131.291 (3)C1—C21.384 (4)
O2—C101.224 (3)C1—H1A0.9300
O5—C201.237 (3)C3—C21.382 (4)
O6—C201.282 (3)C8—C71.379 (4)
O6—Cu1ii1.9409 (18)C8—C91.379 (4)
OW1—HW1A0.8939C8—H8A0.9300
OW1—HW1B0.9207C14—C151.385 (4)
O4—C131.228 (3)C14—C191.399 (4)
O1—C41.227 (3)C18—C171.381 (4)
N4—C101.330 (3)C18—C191.392 (4)
N4—H4A0.8600C18—H18A0.9300
N4—H4B0.8600C9—C111.384 (4)
N1—C11.326 (3)C9—C101.514 (4)
N1—C61.344 (3)C15—H15A0.9300
N2—C41.331 (3)C19—C201.505 (4)
N2—H2A0.8600C2—H2C0.9300
N2—H2B0.8600C11—C121.375 (4)
N3—C71.331 (3)C11—H11A0.9300
N3—C121.335 (3)C12—H12A0.9300
C13—C141.509 (4)C7—H7A0.9300
C16—C171.377 (4)C6—H6A0.9300
C16—C151.385 (4)C17—H17A0.9300
C16—H16A0.9300
O6i—Cu1—O3171.25 (8)C9—C8—H8A120.4
O6i—Cu1—N188.08 (8)C15—C14—C19119.1 (2)
O3—Cu1—N190.75 (8)C15—C14—C13117.9 (2)
O6i—Cu1—N391.93 (8)C19—C14—C13123.0 (2)
O3—Cu1—N387.98 (8)C17—C18—C19120.6 (3)
N1—Cu1—N3171.72 (9)C17—C18—H18A119.7
C13—O3—Cu1107.33 (16)C19—C18—H18A119.7
C20—O6—Cu1ii123.79 (18)C8—C9—C11117.8 (2)
HW1A—OW1—HW1B102.2C8—C9—C10123.5 (2)
C10—N4—H4A120.0C11—C9—C10118.7 (2)
C10—N4—H4B120.0C16—C15—C14120.9 (3)
H4A—N4—H4B120.0C16—C15—H15A119.6
C1—N1—C6117.8 (2)C14—C15—H15A119.6
C1—N1—Cu1123.62 (18)O2—C10—N4123.6 (3)
C6—N1—Cu1118.47 (18)O2—C10—C9120.0 (2)
C4—N2—H2A120.0N4—C10—C9116.4 (2)
C4—N2—H2B120.0C18—C19—C14119.4 (2)
H2A—N2—H2B120.0C18—C19—C20118.5 (2)
C7—N3—C12117.8 (2)C14—C19—C20122.0 (2)
C7—N3—Cu1119.97 (18)C3—C2—C1118.8 (2)
C12—N3—Cu1121.91 (17)C3—C2—H2C120.6
O4—C13—O3123.9 (2)C1—C2—H2C120.6
O4—C13—C14121.7 (2)C12—C11—C9119.7 (2)
O3—C13—C14114.3 (2)C12—C11—H11A120.2
C17—C16—C15120.0 (3)C9—C11—H11A120.2
C17—C16—H16A120.0N3—C12—C11122.5 (2)
C15—C16—H16A120.0N3—C12—H12A118.7
C6—C5—C3118.9 (3)C11—C12—H12A118.7
C6—C5—H5A120.6O5—C20—O6125.6 (3)
C3—C5—H5A120.6O5—C20—C19119.7 (2)
O1—C4—N2123.3 (3)O6—C20—C19114.7 (2)
O1—C4—C3120.2 (2)N3—C7—C8123.1 (3)
N2—C4—C3116.4 (2)N3—C7—H7A118.4
N1—C1—C2123.1 (2)C8—C7—H7A118.4
N1—C1—H1A118.5N1—C6—C5123.0 (3)
C2—C1—H1A118.5N1—C6—H6A118.5
C2—C3—C5118.4 (2)C5—C6—H6A118.5
C2—C3—C4122.5 (2)C16—C17—C18119.9 (3)
C5—C3—C4119.1 (2)C16—C17—H17A120.0
C7—C8—C9119.1 (3)C18—C17—H17A120.0
C7—C8—H8A120.4
N1—Cu1—O3—C1381.57 (16)C8—C9—C10—N423.4 (4)
N3—Cu1—O3—C1390.24 (16)C11—C9—C10—N4158.3 (3)
O6i—Cu1—N1—C1136.7 (2)C17—C18—C19—C142.4 (4)
O3—Cu1—N1—C152.0 (2)C17—C18—C19—C20174.6 (3)
O6i—Cu1—N1—C646.6 (2)C15—C14—C19—C181.7 (4)
O3—Cu1—N1—C6124.8 (2)C13—C14—C19—C18177.3 (3)
O6i—Cu1—N3—C745.0 (2)C15—C14—C19—C20175.2 (3)
O3—Cu1—N3—C7126.2 (2)C13—C14—C19—C205.8 (4)
O6i—Cu1—N3—C12141.7 (2)C5—C3—C2—C10.3 (4)
O3—Cu1—N3—C1247.1 (2)C4—C3—C2—C1177.2 (2)
Cu1—O3—C13—O43.4 (3)N1—C1—C2—C31.2 (4)
Cu1—O3—C13—C14172.49 (16)C8—C9—C11—C120.5 (4)
C6—N1—C1—C20.7 (4)C10—C9—C11—C12178.8 (2)
Cu1—N1—C1—C2176.0 (2)C7—N3—C12—C111.0 (4)
C6—C5—C3—C21.1 (4)Cu1—N3—C12—C11174.5 (2)
C6—C5—C3—C4178.6 (3)C9—C11—C12—N30.4 (4)
O1—C4—C3—C2147.1 (3)Cu1ii—O6—C20—O512.9 (4)
N2—C4—C3—C234.1 (4)Cu1ii—O6—C20—C19164.68 (16)
O1—C4—C3—C530.4 (4)C18—C19—C20—O5135.5 (3)
N2—C4—C3—C5148.4 (3)C14—C19—C20—O541.5 (4)
O4—C13—C14—C15107.9 (3)C18—C19—C20—O642.3 (3)
O3—C13—C14—C1568.1 (3)C14—C19—C20—O6140.8 (3)
O4—C13—C14—C1971.2 (4)C12—N3—C7—C80.9 (4)
O3—C13—C14—C19112.8 (3)Cu1—N3—C7—C8174.5 (2)
C7—C8—C9—C110.6 (4)C9—C8—C7—N30.1 (5)
C7—C8—C9—C10178.9 (3)C1—N1—C6—C50.8 (4)
C17—C16—C15—C142.5 (5)Cu1—N1—C6—C5177.7 (2)
C19—C14—C15—C160.7 (4)C3—C5—C6—N11.7 (4)
C13—C14—C15—C16179.8 (3)C15—C16—C17—C181.8 (5)
C8—C9—C10—O2157.5 (3)C19—C18—C17—C160.7 (5)
C11—C9—C10—O220.8 (4)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O5i0.891.872.735 (3)163
OW1—HW1B···O4iii0.922.123.042 (3)176
N4—H4A···O1iv0.862.183.015 (3)165
N4—H4B···O3v0.862.313.112 (3)155
N2—H2A···O2vi0.862.132.946 (3)159
N2—H2B···OW1ii0.862.463.175 (3)141
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x1, y, z; (vi) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H6N2O)2(C8H4O4)]·H2O
Mr489.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.023 (2), 22.903 (6), 11.473 (3)
β (°) 97.128 (3)
V3)2091.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.38 × 0.16 × 0.09
Data collection
DiffractometerBruker APEX I CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.813, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
17837, 4106, 3171
Rint0.047
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.04
No. of reflections4106
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXL97.

Selected bond lengths (Å) top
Cu1—O6i1.9409 (18)Cu1—N12.006 (2)
Cu1—O31.9610 (17)Cu1—N32.008 (2)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O5i0.891.872.735 (3)163
OW1—HW1B···O4ii0.922.123.042 (3)176
N4—H4A···O1iii0.862.183.015 (3)165
N4—H4B···O3iv0.862.313.112 (3)155
N2—H2A···O2v0.862.132.946 (3)159
N2—H2B···OW1vi0.862.463.175 (3)141
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+3/2; (vi) x+1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds