Download citation
Download citation
link to html
The title complex, [Ag2(C14H8O4)(C7H16N2)2]·2H2O, consists of a biphenyl-4,4′-dicarboxyl­ate-bridged centrosymmetric dinuclear silver(I) complex and two uncoordinated water mol­ecules. The Ag atom is three-coordinated by two N atoms of 2-(piperidin-1-yl)ethanamine and one O atom of biphenyl-4,4′-dicarboxyl­ate, forming a distorted T-shaped coordination environment, the distortion being caused by the strain created by the five-membered chelate Ag—N—C—C—N ring. In the crystal structure, mol­ecules are linked through inter­molecular N—H...O and O—H...O hydrogen bonds, forming layers parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680706103X/hg2330sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680706103X/hg2330Isup2.hkl
Contains datablock I

CCDC reference: 672749

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.078
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.94
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _diffrn_reflns_theta_full 27.49 From the CIF: _reflns_number_total 3279 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3468 Completeness (_total/calc) 94.55% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.95 PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.57 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT245_ALERT_2_C U(iso) H3A Smaller than U(eq) O3 by ... 0.02 AngSq PLAT245_ALERT_2_C U(iso) H3B Smaller than U(eq) O3 by ... 0.02 AngSq
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structural characterization of silver(I) complexes with carboxylate anions as counter-ions or ligands has attracted much interest in the last few years (Smith et al., 1996; Wei et al., 1998; Nomiya et al., 2000; Kristiansson, 2001). As a further investigation of such silver(I) complexes, in this paper, a new silver(I) complex is reported.

The title complex consists of a biphenyl-4,4'-dicarboxylate bridged dinuclear silver(I) complex and two lattice water molecules. The Ag atom is three-coordinated by two N atoms of 2-piperidin-1-ylethylamine and one O atom of biphenyl-4,4'-dicarboxylate, forming a distorted T-shaped coordination environment (Fig. 1). The distortion of the T-shaped coordination is caused by the strain created by the five-membered chelate ring Ag1—N1—C9—C8—N2. All the coordination bond values (Table 1) are within normal ranges and comparable to the similar silver(I) complexes (Melcer et al., 2001; Wang & Mak, 2003; Schultheiss et al., 2003).

In the crystal, the lattice water molecules are linked to the silver(I) complex units through intermolecular hydrogen bonds O3–H3B···O2 and intramolecular hydrogen bonds O3–H3A···O2 (Table 2). The adjacent molecules are further linked through intermolecular hydrogen bonds N2–H2A···O2 and N2–H2B···O2, forming layers parallel to the bc plane (Fig. 2).

Related literature top

For related literature, see: Kristiansson (2001); Melcer et al. (2001); Nomiya et al. (2000); Schultheiss et al. (2003); Smith et al. (1996); Wang & Mak (2003); Wei et al. (1998).

Experimental top

Ag2O (0.2 mmol, 46.3 mg) and biphenyl-4,4'-dicarboxylic acid (0.1 mmol, 24.2 mg) were dissolved in an ammonia solution (15 ml, 30%), and the mixture was stirred for 30 min at room temperature. To the above mixture was added with stirring a methanol solution (5 ml) of 2-piperidin-1-ylethylamine (0.2 mmol, 25.6 mg). The final mixture was further stirred for 30 min at room temperature. The resulting clear colorless solution was kept in dark for a week, yielding block-shaped colorless crystals. Analysis found: C 44.73, H 6.02, N 7.32%; calculated for C28H44Ag2N4O6: C 44.94, H 5.93, N 7.49%. A broad absorption at 3412 cm-1 in the infrared spectrum is consistent with the presence of solvated water molecules.

Refinement top

H3A and H3B were located from a difference Fourier map and refined isotropically, with O–H distances restrained to 0.85 (1) Å, H···H distance restrained to 1.37 (2) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The structure of the complex at the 30% probability level for non hydrogen atoms.
[Figure 2] Fig. 2. Molecular packing of the complex.
µ-Biphenyl-4,4'-dicarboxylato-bis{[2-(piperidin-1-yl)ethanamine]silver(I)} dihydrate top
Crystal data top
[Ag2(C14H8O4)(C7H16N2)2]·2H2OZ = 1
Mr = 748.41F(000) = 382
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2410 (14) ÅCell parameters from 2907 reflections
b = 8.3920 (17) Åθ = 2.4–27.3°
c = 13.154 (3) ŵ = 1.34 mm1
α = 82.95 (3)°T = 298 K
β = 76.61 (3)°Block, colorless
γ = 77.34 (3)°0.40 × 0.37 × 0.32 mm
V = 756.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.616, Tmax = 0.674k = 1010
6271 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.0748P]
where P = (Fo2 + 2Fc2)/3
3279 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ag2(C14H8O4)(C7H16N2)2]·2H2Oγ = 77.34 (3)°
Mr = 748.41V = 756.5 (3) Å3
Triclinic, P1Z = 1
a = 7.2410 (14) ÅMo Kα radiation
b = 8.3920 (17) ŵ = 1.34 mm1
c = 13.154 (3) ÅT = 298 K
α = 82.95 (3)°0.40 × 0.37 × 0.32 mm
β = 76.61 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2614 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.674Rint = 0.024
6271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
3279 reflectionsΔρmin = 0.39 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.28889 (4)0.34687 (3)0.17052 (2)0.05437 (12)
O10.4604 (3)0.4290 (3)0.26075 (17)0.0610 (7)
O20.6870 (3)0.5045 (3)0.13123 (16)0.0549 (6)
O30.3545 (6)0.7009 (4)0.0175 (3)0.1041 (12)
N10.2171 (4)0.0674 (3)0.2252 (2)0.0432 (6)
N20.1136 (4)0.3156 (3)0.0587 (2)0.0477 (7)
H2A0.00670.37580.07660.057*
H2B0.16730.35230.00630.057*
C10.7356 (4)0.4784 (3)0.3058 (2)0.0346 (6)
C20.8925 (4)0.5553 (4)0.2824 (2)0.0394 (7)
H20.92980.60210.21490.047*
C30.9949 (4)0.5637 (4)0.3576 (2)0.0411 (7)
H31.09960.61640.33960.049*
C40.9457 (4)0.4958 (3)0.4590 (2)0.0358 (7)
C50.7885 (5)0.4175 (5)0.4813 (2)0.0590 (10)
H50.75150.36950.54840.071*
C60.6863 (5)0.4095 (5)0.4064 (2)0.0553 (9)
H60.58180.35640.42410.066*
C70.6205 (4)0.4702 (4)0.2251 (2)0.0376 (7)
C80.1025 (6)0.1431 (4)0.0589 (3)0.0595 (10)
H8A0.22300.08460.01900.071*
H8B0.00110.13570.02540.071*
C90.0657 (5)0.0650 (4)0.1690 (3)0.0591 (10)
H9A0.05720.12200.20750.071*
H9B0.05520.04770.16670.071*
C100.3912 (6)0.0542 (5)0.1904 (3)0.0592 (9)
H10A0.43310.03960.11480.071*
H10B0.36300.16330.20800.071*
C110.5512 (6)0.0368 (5)0.2422 (3)0.0723 (12)
H11A0.66540.11940.21920.087*
H11B0.58450.07000.22090.087*
C120.4900 (7)0.0554 (6)0.3597 (4)0.0893 (15)
H12A0.58850.03130.39120.107*
H12B0.47600.16740.38210.107*
C130.2999 (7)0.0599 (6)0.3957 (3)0.0850 (14)
H13A0.25420.03720.47030.102*
H13B0.32050.17160.38420.102*
C140.1473 (6)0.0441 (5)0.3391 (3)0.0666 (11)
H14A0.11480.06350.35690.080*
H14B0.03100.12540.36100.080*
H3A0.413 (6)0.643 (4)0.062 (2)0.080*
H3B0.335 (6)0.640 (4)0.024 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0592 (2)0.06183 (18)0.05765 (18)0.02704 (14)0.03305 (15)0.00279 (12)
O10.0478 (15)0.106 (2)0.0438 (13)0.0359 (14)0.0163 (12)0.0092 (13)
O20.0590 (16)0.0863 (17)0.0314 (12)0.0338 (13)0.0173 (11)0.0001 (11)
O30.129 (3)0.093 (2)0.107 (3)0.009 (2)0.069 (2)0.040 (2)
N10.0429 (16)0.0449 (14)0.0444 (15)0.0102 (13)0.0132 (13)0.0027 (12)
N20.0488 (17)0.0587 (17)0.0404 (14)0.0154 (14)0.0180 (13)0.0033 (12)
C10.0347 (17)0.0418 (16)0.0311 (14)0.0075 (13)0.0121 (13)0.0068 (12)
C20.0435 (19)0.0506 (18)0.0279 (14)0.0148 (15)0.0113 (13)0.0006 (13)
C30.0407 (19)0.0540 (18)0.0365 (16)0.0203 (15)0.0144 (14)0.0019 (14)
C40.0384 (18)0.0431 (16)0.0307 (15)0.0115 (14)0.0120 (13)0.0059 (12)
C50.067 (2)0.093 (3)0.0335 (16)0.049 (2)0.0215 (17)0.0124 (17)
C60.055 (2)0.085 (3)0.0417 (18)0.042 (2)0.0203 (17)0.0043 (17)
C70.0371 (18)0.0427 (16)0.0382 (16)0.0074 (14)0.0158 (14)0.0084 (13)
C80.068 (3)0.062 (2)0.063 (2)0.0134 (19)0.035 (2)0.0128 (18)
C90.055 (2)0.051 (2)0.082 (3)0.0179 (17)0.029 (2)0.0004 (18)
C100.060 (3)0.059 (2)0.056 (2)0.0015 (19)0.0151 (19)0.0090 (17)
C110.049 (2)0.080 (3)0.087 (3)0.000 (2)0.029 (2)0.006 (2)
C120.087 (4)0.107 (4)0.080 (3)0.017 (3)0.049 (3)0.024 (3)
C130.102 (4)0.113 (4)0.044 (2)0.025 (3)0.024 (2)0.004 (2)
C140.063 (3)0.075 (3)0.051 (2)0.011 (2)0.002 (2)0.0107 (19)
Geometric parameters (Å, º) top
Ag1—O12.164 (2)C5—C61.378 (4)
Ag1—N22.225 (2)C5—H50.9300
Ag1—N12.497 (3)C6—H60.9300
O1—C71.252 (4)C8—C91.504 (5)
O2—C71.240 (4)C8—H8A0.9700
O3—H3A0.84 (3)C8—H8B0.9700
O3—H3B0.85 (3)C9—H9A0.9700
N1—C101.457 (5)C9—H9B0.9700
N1—C91.462 (4)C10—C111.514 (5)
N1—C141.469 (4)C10—H10A0.9700
N2—C81.468 (4)C10—H10B0.9700
N2—H2A0.9000C11—C121.505 (6)
N2—H2B0.9000C11—H11A0.9700
C1—C61.376 (4)C11—H11B0.9700
C1—C21.383 (4)C12—C131.510 (7)
C1—C71.510 (4)C12—H12A0.9700
C2—C31.384 (4)C12—H12B0.9700
C2—H20.9300C13—C141.505 (6)
C3—C41.383 (4)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.393 (4)C14—H14A0.9700
C4—C4i1.490 (5)C14—H14B0.9700
O1—Ag1—N2167.47 (10)C9—C8—H8A109.5
O1—Ag1—N1115.68 (9)N2—C8—H8B109.5
N2—Ag1—N176.85 (9)C9—C8—H8B109.5
C7—O1—Ag1125.81 (19)H8A—C8—H8B108.1
H3A—O3—H3B110 (2)N1—C9—C8113.4 (3)
C10—N1—C9111.7 (3)N1—C9—H9A108.9
C10—N1—C14110.6 (3)C8—C9—H9A108.9
C9—N1—C14111.3 (3)N1—C9—H9B108.9
C10—N1—Ag1109.0 (2)C8—C9—H9B108.9
C9—N1—Ag1102.13 (18)H9A—C9—H9B107.7
C14—N1—Ag1111.9 (2)N1—C10—C11110.2 (3)
C8—N2—Ag1111.07 (19)N1—C10—H10A109.6
C8—N2—H2A109.4C11—C10—H10A109.6
Ag1—N2—H2A109.4N1—C10—H10B109.6
C8—N2—H2B109.4C11—C10—H10B109.6
Ag1—N2—H2B109.4H10A—C10—H10B108.1
H2A—N2—H2B108.0C12—C11—C10111.2 (4)
C6—C1—C2117.6 (2)C12—C11—H11A109.4
C6—C1—C7120.6 (3)C10—C11—H11A109.4
C2—C1—C7121.8 (2)C12—C11—H11B109.4
C1—C2—C3121.1 (3)C10—C11—H11B109.4
C1—C2—H2119.5H11A—C11—H11B108.0
C3—C2—H2119.5C11—C12—C13110.0 (3)
C4—C3—C2121.8 (3)C11—C12—H12A109.7
C4—C3—H3119.1C13—C12—H12A109.7
C2—C3—H3119.1C11—C12—H12B109.7
C3—C4—C5116.5 (2)C13—C12—H12B109.7
C3—C4—C4i122.4 (3)H12A—C12—H12B108.2
C5—C4—C4i121.1 (3)C14—C13—C12112.4 (4)
C6—C5—C4121.7 (3)C14—C13—H13A109.1
C6—C5—H5119.2C12—C13—H13A109.1
C4—C5—H5119.2C14—C13—H13B109.1
C1—C6—C5121.3 (3)C12—C13—H13B109.1
C1—C6—H6119.3H13A—C13—H13B107.9
C5—C6—H6119.3N1—C14—C13110.4 (3)
O2—C7—O1125.1 (3)N1—C14—H14A109.6
O2—C7—C1119.5 (3)C13—C14—H14A109.6
O1—C7—C1115.3 (3)N1—C14—H14B109.6
N2—C8—C9110.8 (3)C13—C14—H14B109.6
N2—C8—H8A109.5H14A—C14—H14B108.1
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.902.243.134 (4)175
N2—H2B···O2iii0.902.132.994 (4)161
O3—H3A···O20.84 (3)2.38 (2)3.174 (4)156 (4)
O3—H3B···O2iii0.85 (3)2.02 (3)2.867 (4)175 (4)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C14H8O4)(C7H16N2)2]·2H2O
Mr748.41
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2410 (14), 8.3920 (17), 13.154 (3)
α, β, γ (°)82.95 (3), 76.61 (3), 77.34 (3)
V3)756.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.40 × 0.37 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
6271, 3279, 2614
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.06
No. of reflections3279
No. of parameters187
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.902.243.134 (4)175
N2—H2B···O2ii0.902.132.994 (4)161
O3—H3A···O20.84 (3)2.38 (2)3.174 (4)156 (4)
O3—H3B···O2ii0.85 (3)2.02 (3)2.867 (4)175 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds