Download citation
Download citation
link to html
In the title complex, [CuCl2(C11H21N3O)], the five-coordinate Cu atom has a distorted square-pyramidal configuration. The crystal packing is stabilized by inter­molecular N—H...Cl hydrogen-bonding inter­actions. The furan ring is disordered over two position, with site occupancy factors of ca. 0.6 and 0.4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056061/hg2341sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056061/hg2341Isup2.hkl
Contains datablock I

CCDC reference: 672649

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.027
  • wR factor = 0.076
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT432_ALERT_2_A Short Inter X...Y Contact C9' .. C9' .. 2.89 Ang.
Author Response: The short inter contact is owing to the disorder of the furan ring, which should be omitted.

Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT301_ALERT_3_C Main Residue Disorder ......................... 22.00 Perc. PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2C ... ?
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 17
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Polyamines with pendant arm have received much attention because of their strong coordination ability with transition metal ions and interesting biochemical properties (Kurisaki et al., 2005; Kang et al., 1995; Jee et al., 2003; Zhu et al., 1996). Up to the present, many linear and cyclic polyamine complexes with branched chain have been made in order to search for their potential uses. In order to search for new complexes of polyamine with pendant arms, we report the synthesis and crystal structure of the title complex, dichloro[N,N'-bis(3-aminopropyl-κN,κN') -2-furanmethylamine-κN]copper(II), (I).

In the structure of (I), the copper atom is coordinated with three N atoms and two chloride anions (Fig. 1). The equatorial positions are occupied by three nitrogen atoms and one chloride in which the Cu—N and Cu—Cl bond lengths fall in the range 1.9930 (16)–2.3810 (5) Å. The deviation of the Cu atom from the N3Cl basal plane is 0.3536 (2) Å. One Cl atom occupies the axial position with the elongated Cu—Cl distance of 2.5163 (6) Å. Intermolecular N—H···Cl hydrogen bonds play an important role in stabilizing the crystal packing.

Related literature top

For related literature, see: Jee et al. (2003); Kang et al. (1995); Kurisaki et al. (2005); Zhang et al. (2006); Zhu et al. (1996).

Experimental top

All the solvents and chemicals were of analytical grade and used without further purification. Furanmethylamine and acrylonitrile were purified by distillation. N,N'-bis(3-aminopropyl) -2-furanmethylamine was prepared by a similar method to that described in the literature (Zhang et al., 2006). The title complex was synthesized by the following procedure: a methanol solution (10 ml) of CuCl2 (0.134 g, 1 mmol) was added to a methanol solution (10 ml) of [N,N'-bis(3-aminopropyl) -2-furanmethylamine (0.22 g, 1 mmol). The mixture was stirred at ambient temperature for about one day and then filtered. A methanol solution (5 ml) of NaClO4(0.142 g, 1 mmol) was added to the filtrate and the stirring was continued for 2 h. Blue crystals suitable for the X-ray diffraction were obtained by slow diffusion of diethyl ether into the mother solution over one month.

Refinement top

Furan was disordered and major to minor of occupancy was 0.61 (1): 0.39 (1). H atoms bonded to C atoms of CH2 and furan were placed in calculated positions, with C—H distances 0.97Å (for CH2) and 0.93Å (for furan), and included in the refinement in the riding-model approximation with Uiso(H) = 1.2 Ueq(C). Other H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N—H = 0.90 Å, and with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of the title complex cation, showing the labeling of the non-H atoms and 30% probability ellipsoids.
[Bis(3-aminopropyl-κN)(2-furylmethyl)amine-κN]dichloridocopper(II) top
Crystal data top
[CuCl2(C11H21N3O)]Z = 2
Mr = 345.75F(000) = 358
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7493 (4) ÅCell parameters from 4753 reflections
b = 9.7335 (5) Åθ = 2.2–28.3°
c = 11.9658 (6) ŵ = 1.86 mm1
α = 94.358 (1)°T = 298 K
β = 104.696 (1)°Block, blue
γ = 104.181 (1)°0.30 × 0.20 × 0.16 mm
V = 729.16 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3156 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.584, Tmax = 0.756k = 1212
7493 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.25 e Å3
17 restraintsΔρmin = 0.38 e Å3
Crystal data top
[CuCl2(C11H21N3O)]γ = 104.181 (1)°
Mr = 345.75V = 729.16 (7) Å3
Triclinic, P1Z = 2
a = 6.7493 (4) ÅMo Kα radiation
b = 9.7335 (5) ŵ = 1.86 mm1
c = 11.9658 (6) ÅT = 298 K
α = 94.358 (1)°0.30 × 0.20 × 0.16 mm
β = 104.696 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3156 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2934 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.756Rint = 0.023
7493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02717 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3156 reflectionsΔρmin = 0.38 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.31362 (3)0.24158 (2)0.095524 (17)0.03385 (9)
C10.4985 (3)0.1845 (3)0.33945 (18)0.0492 (5)
H1A0.50990.19860.42220.059*
H1B0.63780.22880.33050.059*
C20.4441 (4)0.0255 (3)0.2990 (2)0.0576 (6)
H2A0.29720.01800.29650.069*
H2B0.53350.01640.35530.069*
C30.4735 (4)0.0094 (3)0.1794 (2)0.0562 (5)
H3A0.61730.03910.17930.067*
H3B0.45260.11170.16160.067*
C40.4435 (3)0.4152 (2)0.33239 (17)0.0473 (5)
H4A0.58400.44580.32080.057*
H4B0.46250.42110.41590.057*
C50.3204 (4)0.5202 (2)0.2869 (2)0.0543 (6)
H5A0.17280.48180.28540.065*
H5B0.37710.60940.34070.065*
C60.3291 (4)0.5515 (2)0.1663 (2)0.0518 (5)
H6A0.25870.62550.14560.062*
H6B0.47640.58660.16610.062*
C70.1299 (3)0.2061 (2)0.29461 (16)0.0369 (4)
H7A0.07990.10420.26610.044*
H7B0.03330.25170.24680.044*
C80.119 (3)0.2299 (16)0.4226 (12)0.040 (3)0.608 (12)
C110.1618 (14)0.1877 (10)0.6011 (8)0.0581 (17)0.608 (12)
H110.19500.14570.66820.070*0.608 (12)
C100.0701 (12)0.2934 (8)0.5932 (6)0.0441 (13)0.608 (12)
H100.03180.33980.65180.053*0.608 (12)
O10.2010 (11)0.1482 (5)0.5006 (5)0.0572 (15)0.608 (12)
C90.0425 (18)0.3213 (12)0.4752 (8)0.0432 (17)0.608 (12)
H90.01740.39030.44190.052*0.608 (12)
C8'0.115 (5)0.222 (2)0.4068 (19)0.038 (4)0.392 (12)
C10'0.103 (2)0.2105 (17)0.5948 (12)0.068 (4)0.392 (12)
H10'0.11850.18130.66800.082*0.392 (12)
C11'0.053 (2)0.3265 (15)0.5613 (12)0.060 (3)0.392 (12)
H11'0.01850.39200.60830.072*0.392 (12)
C9'0.1286 (19)0.1389 (8)0.4902 (12)0.059 (3)0.392 (12)
H9'0.15100.04860.48260.071*0.392 (12)
O1'0.059 (2)0.3387 (14)0.4501 (11)0.055 (3)0.392 (12)
Cl10.12864 (9)0.17685 (6)0.10687 (4)0.05026 (14)
Cl20.70195 (8)0.33846 (7)0.10934 (5)0.05553 (15)
N10.3464 (2)0.26238 (17)0.27872 (13)0.0351 (3)
N20.3189 (3)0.03707 (18)0.08969 (15)0.0450 (4)
H2D0.18820.01450.08920.054*
H2C0.33730.01050.02020.054*
N30.2241 (3)0.42131 (17)0.07939 (14)0.0407 (4)
H3C0.23560.44570.00980.049*
H3D0.08460.39910.07500.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03157 (13)0.03896 (14)0.03096 (13)0.00929 (9)0.00983 (9)0.00263 (9)
C10.0379 (10)0.0731 (14)0.0370 (10)0.0214 (10)0.0055 (8)0.0078 (9)
C20.0583 (14)0.0710 (15)0.0585 (13)0.0382 (12)0.0180 (11)0.0277 (11)
C30.0566 (13)0.0565 (13)0.0687 (14)0.0320 (11)0.0236 (11)0.0143 (11)
C40.0433 (11)0.0508 (11)0.0347 (9)0.0030 (9)0.0074 (8)0.0070 (8)
C50.0671 (15)0.0392 (10)0.0519 (12)0.0039 (10)0.0235 (11)0.0096 (9)
C60.0603 (13)0.0369 (10)0.0560 (13)0.0068 (9)0.0200 (11)0.0029 (9)
C70.0328 (9)0.0401 (9)0.0356 (9)0.0082 (7)0.0092 (7)0.0001 (7)
C80.038 (4)0.056 (5)0.027 (3)0.008 (3)0.016 (3)0.004 (3)
C110.074 (4)0.082 (3)0.042 (2)0.044 (3)0.031 (3)0.022 (2)
C100.047 (2)0.056 (3)0.034 (3)0.016 (2)0.018 (2)0.003 (2)
O10.078 (4)0.081 (2)0.0387 (19)0.052 (2)0.029 (2)0.0234 (17)
C90.045 (3)0.049 (3)0.043 (4)0.019 (2)0.020 (3)0.010 (2)
C8'0.033 (5)0.042 (5)0.039 (7)0.015 (4)0.006 (5)0.006 (4)
C10'0.078 (7)0.098 (8)0.040 (4)0.027 (6)0.034 (5)0.008 (5)
C11'0.055 (5)0.078 (6)0.045 (6)0.006 (4)0.027 (4)0.001 (4)
C9'0.060 (6)0.071 (5)0.057 (5)0.025 (4)0.026 (4)0.021 (4)
O1'0.057 (3)0.063 (5)0.050 (5)0.011 (3)0.032 (3)0.003 (3)
Cl10.0550 (3)0.0574 (3)0.0319 (2)0.0085 (2)0.0095 (2)0.0003 (2)
Cl20.0330 (2)0.0742 (4)0.0657 (3)0.0146 (2)0.0198 (2)0.0286 (3)
N10.0299 (7)0.0420 (8)0.0309 (7)0.0085 (6)0.0068 (6)0.0007 (6)
N20.0489 (10)0.0448 (9)0.0465 (9)0.0172 (8)0.0196 (8)0.0024 (7)
N30.0400 (9)0.0413 (8)0.0410 (8)0.0116 (7)0.0117 (7)0.0055 (7)
Geometric parameters (Å, º) top
Cu1—N31.9930 (16)C7—C8'1.372 (19)
Cu1—N21.9959 (17)C7—N11.495 (2)
Cu1—N12.1353 (15)C7—C81.555 (12)
Cu1—Cl12.3810 (5)C7—H7A0.9700
Cu1—Cl22.5163 (6)C7—H7B0.9700
C1—N11.497 (3)C8—C91.326 (9)
C1—C21.511 (3)C8—O11.370 (11)
C1—H1A0.9700C11—C101.322 (6)
C1—H1B0.9700C11—O11.343 (8)
C2—C31.518 (3)C11—H110.9300
C2—H2A0.9700C10—C91.433 (7)
C2—H2B0.9700C10—H100.9300
C3—N21.477 (3)C9—H90.9300
C3—H3A0.9700C8'—C9'1.331 (9)
C3—H3B0.9700C8'—O1'1.385 (15)
C4—N11.490 (2)C10'—C11'1.317 (8)
C4—C51.517 (3)C10'—C9'1.455 (9)
C4—H4A0.9700C10'—H10'0.9300
C4—H4B0.9700C11'—O1'1.353 (11)
C5—C61.509 (3)C11'—H11'0.9300
C5—H5A0.9700C9'—H9'0.9300
C5—H5B0.9700N2—H2D0.9000
C6—N31.475 (3)N2—H2C0.9000
C6—H6A0.9700N3—H3C0.9000
C6—H6B0.9700N3—H3D0.9000
N3—Cu1—N2164.28 (7)C8—C7—H7A108.5
N3—Cu1—N192.82 (6)C8'—C7—H7B108.8
N2—Cu1—N191.68 (7)N1—C7—H7B108.5
N3—Cu1—Cl184.66 (5)C8—C7—H7B108.5
N2—Cu1—Cl185.11 (5)H7A—C7—H7B107.5
N1—Cu1—Cl1155.99 (4)C9—C8—O1109.9 (9)
N3—Cu1—Cl299.22 (5)C9—C8—C7130.9 (9)
N2—Cu1—Cl295.14 (5)O1—C8—C7119.1 (9)
N1—Cu1—Cl297.20 (4)C10—C11—O1111.9 (8)
Cl1—Cu1—Cl2106.78 (2)C10—C11—H11124.1
N1—C1—C2116.70 (17)O1—C11—H11124.1
N1—C1—H1A108.1C11—C10—C9105.4 (8)
C2—C1—H1A108.1C11—C10—H10127.3
N1—C1—H1B108.1C9—C10—H10127.3
C2—C1—H1B108.1C11—O1—C8105.9 (7)
H1A—C1—H1B107.3C8—C9—C10106.7 (8)
C1—C2—C3113.1 (2)C8—C9—H9126.6
C1—C2—H2A109.0C10—C9—H9126.6
C3—C2—H2A109.0C9'—C8'—C7133.0 (16)
C1—C2—H2B109.0C9'—C8'—O1'106.0 (14)
C3—C2—H2B109.0C7—C8'—O1'120.8 (10)
H2A—C2—H2B107.8C11'—C10'—C9'103.5 (11)
N2—C3—C2109.90 (18)C11'—C10'—H10'128.2
N2—C3—H3A109.7C9'—C10'—H10'128.2
C2—C3—H3A109.7C10'—C11'—O1'111.8 (13)
N2—C3—H3B109.7C10'—C11'—H11'124.1
C2—C3—H3B109.7O1'—C11'—H11'124.1
H3A—C3—H3B108.2C8'—C9'—C10'109.9 (13)
N1—C4—C5116.33 (17)C8'—C9'—H9'125.1
N1—C4—H4A108.2C10'—C9'—H9'125.1
C5—C4—H4A108.2C11'—O1'—C8'108.4 (12)
N1—C4—H4B108.2C4—N1—C7111.55 (15)
C5—C4—H4B108.2C4—N1—C1104.91 (15)
H4A—C4—H4B107.4C7—N1—C1111.46 (15)
C6—C5—C4113.80 (19)C4—N1—Cu1109.90 (12)
C6—C5—H5A108.8C7—N1—Cu1107.77 (10)
C4—C5—H5A108.8C1—N1—Cu1111.28 (12)
C6—C5—H5B108.8C3—N2—Cu1121.57 (15)
C4—C5—H5B108.8C3—N2—H2D106.9
H5A—C5—H5B107.7Cu1—N2—H2D106.9
N3—C6—C5110.68 (17)C3—N2—H2C106.9
N3—C6—H6A109.5Cu1—N2—H2C106.9
C5—C6—H6A109.5H2D—N2—H2C106.7
N3—C6—H6B109.5C6—N3—Cu1121.74 (14)
C5—C6—H6B109.5C6—N3—H3C106.9
H6A—C6—H6B108.1Cu1—N3—H3C106.9
C8'—C7—N1116.5 (13)C6—N3—H3D106.9
N1—C7—C8114.9 (8)Cu1—N3—H3D106.9
C8'—C7—H7A106.6H3C—N3—H3D106.7
N1—C7—H7A108.5
N1—C1—C2—C371.7 (3)C8—C7—N1—C164.8 (5)
C1—C2—C3—N265.9 (3)C8'—C7—N1—Cu1174.3 (7)
N1—C4—C5—C673.3 (2)C8—C7—N1—Cu1172.9 (5)
C4—C5—C6—N364.4 (3)C2—C1—N1—C4177.78 (18)
N1—C7—C8—C9105.3 (19)C2—C1—N1—C761.4 (2)
N1—C7—C8—O173.6 (15)C2—C1—N1—Cu159.0 (2)
O1—C11—C10—C91.8 (10)N3—Cu1—N1—C439.90 (13)
C10—C11—O1—C83.1 (13)N2—Cu1—N1—C4155.16 (13)
C9—C8—O1—C113.3 (17)Cl1—Cu1—N1—C4123.10 (13)
C7—C8—O1—C11177.6 (12)Cl2—Cu1—N1—C459.76 (13)
O1—C8—C9—C102.2 (18)N3—Cu1—N1—C781.85 (12)
C7—C8—C9—C10178.8 (16)N2—Cu1—N1—C783.09 (12)
C11—C10—C9—C80.3 (14)Cl1—Cu1—N1—C71.35 (19)
N1—C7—C8'—C9'92 (3)Cl2—Cu1—N1—C7178.49 (11)
N1—C7—C8'—O1'95 (2)N3—Cu1—N1—C1155.67 (13)
C9'—C10'—C11'—O1'4.0 (17)N2—Cu1—N1—C139.40 (14)
C7—C8'—C9'—C10'179 (3)Cl1—Cu1—N1—C1121.14 (14)
O1'—C8'—C9'—C10'6 (3)Cl2—Cu1—N1—C156.00 (13)
C11'—C10'—C9'—C8'6 (2)C2—C3—N2—Cu159.8 (2)
C10'—C11'—O1'—C8'0 (2)N3—Cu1—N2—C3150.6 (2)
C9'—C8'—O1'—C11'4 (3)N1—Cu1—N2—C344.01 (16)
C7—C8'—O1'—C11'179 (2)Cl1—Cu1—N2—C3159.83 (16)
C5—C4—N1—C758.9 (2)Cl2—Cu1—N2—C353.38 (16)
C5—C4—N1—C1179.74 (17)C5—C6—N3—Cu156.2 (2)
C5—C4—N1—Cu160.5 (2)N2—Cu1—N3—C6148.3 (2)
C8'—C7—N1—C453.6 (8)N1—Cu1—N3—C641.86 (16)
C8—C7—N1—C452.1 (5)Cl1—Cu1—N3—C6162.08 (15)
C8'—C7—N1—C163.3 (8)Cl2—Cu1—N3—C655.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.463.098 (6)124
C7—H7B···Cl2i0.972.773.732 (2)170
N3—H3D···Cl2i0.902.653.5345 (18)168
N3—H3C···Cl2ii0.902.643.4086 (17)144
N2—H2D···Cl1iii0.902.403.2865 (19)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C11H21N3O)]
Mr345.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.7493 (4), 9.7335 (5), 11.9658 (6)
α, β, γ (°)94.358 (1), 104.696 (1), 104.181 (1)
V3)729.16 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.584, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
7493, 3156, 2934
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.07
No. of reflections3156
No. of parameters209
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.463.098 (6)123.5
C7—H7B···Cl2i0.972.773.732 (2)169.9
N3—H3D···Cl2i0.902.653.5345 (18)168.2
N3—H3C···Cl2ii0.902.643.4086 (17)144.4
N2—H2D···Cl1iii0.902.403.2865 (19)170.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds