Download citation
Download citation
link to html
The crystal structure of the title compound, C18H19NO2, is stabilized by inter­molecular N—H...O and C—H...O hydrogen bonds and also C—H...π inter­actions. These hy­drogen-bond inter­actions generate edge-fused R22(8)R22(10)R22(8)R42(20)R22(8)R22(10)R22(8) ring motifs. The phthalide group is planar and oriented at a dihedral angle of 57.92 (16)° with respect to the benzene ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053226/hk2339sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053226/hk2339Isup2.hkl
Contains datablock I

CCDC reference: 672791

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.080
  • wR factor = 0.249
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.105 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.10 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.71 mm PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 1000 Deg. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT480_ALERT_4_C Long H...A H-Bond Reported H10 .. O2 .. 2.70 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phthalides (isobenzofuranones) possess several important properties, such as fungicidal (Aoki et al., 1973; Lacova, 1973), bactericidal and herbicidal (Lacova, 1973), analgesic (Elderfield, 1951), hypotensive and vasorelaxant activities (Tsi & Tan, 1997). Considering the potential interest of such phthalide-3-phosphonates in synthetic organic chemistry as agrochemical and pharmaceutical agents, we decided to investigate the solid-state structures of 3-substituted phthalides by X-ray diffraction methods. As part of a continuing study of the interplay between molecular conformation and supra- molecular aggregation in 3-substituted phthalides (Büyükgüngör & Odabaşoğlu, 2006a,b; Odabaşoğlu & Büyükgüngör, 2006a–r, 2007a–g), we report herein the structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.026 (4) Å (for C6). The dihedral angle between the planar phthalide group and phenyl ring is 57.92 (16)°.

In (I), the crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds and also C—H···π interactions (Table 1), which generate edge-fused R22(8)R22(10)R22(8)R42(20)R22(8)R22(10)R22(8) ring motifs (Fig. 2) (Etter, 1990). The hydrogen bonded motifs are linked to each other forming three-dimensional network (Fig. 3).

Related literature top

For related structures, see: Büyükgüngör & Odabaşoğlu (2006a,b, 2007b); Odabaşoğlu & Büyükgüngör (2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r, 2007a,cb,c,d,e,f). For related literature, see: Aoki et al. (1973, 1974); Lacova (1973); Elderfield (1951); Tsi & Tan (1997). For general background, see: Etter (1990). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006a), using phthalaldehydic acid and 4-iodoaniline as starting materials (yield; 83%, m.p. 409–411 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a DMF solution at room temperature.

Refinement top

H19 (for NH) was located in difference syntheses and refined isotropically [N—H = 0.99 (4) Å, Uiso(H) = 0.066 (11) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R44(20) motif. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity [symmetry codes: (i) x + 1, y, z; (ii) x + 1, -y, 1 - z; (iii) -x, y, z].
[Figure 3] Fig. 3. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-(4-Butylphenylamino)isobenzofuran-1(3H)-one top
Crystal data top
C18H19NO2Z = 2
Mr = 281.34F(000) = 300
Triclinic, P1Dx = 1.210 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8603 (7) ÅCell parameters from 16234 reflections
b = 7.2525 (9) Åθ = 2.2–27.3°
c = 18.875 (2) ŵ = 0.08 mm1
α = 89.268 (10)°T = 296 K
β = 82.734 (10)°Plane, colorless
γ = 76.045 (10)°0.71 × 0.33 × 0.07 mm
V = 772.18 (16) Å3
Data collection top
Stoe IPDS-2
diffractometer
3002 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1669 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.960, Tmax = 0.992l = 2323
16234 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.249 w = 1/[σ2(Fo2) + (0.0977P)2 + 0.5206P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3002 reflectionsΔρmax = 0.30 e Å3
195 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (11)
Crystal data top
C18H19NO2γ = 76.045 (10)°
Mr = 281.34V = 772.18 (16) Å3
Triclinic, P1Z = 2
a = 5.8603 (7) ÅMo Kα radiation
b = 7.2525 (9) ŵ = 0.08 mm1
c = 18.875 (2) ÅT = 296 K
α = 89.268 (10)°0.71 × 0.33 × 0.07 mm
β = 82.734 (10)°
Data collection top
Stoe IPDS-2
diffractometer
3002 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1669 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.105
16234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.249H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
3002 reflectionsΔρmin = 0.22 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9390 (5)0.2237 (4)0.41838 (16)0.0799 (9)
O20.7034 (5)0.2755 (4)0.33295 (15)0.0698 (8)
N10.3062 (6)0.3156 (4)0.30706 (19)0.0642 (9)
H190.193 (7)0.303 (5)0.349 (2)0.066 (11)*
C10.7958 (7)0.1738 (5)0.3882 (2)0.0630 (10)
C20.6939 (7)0.0084 (5)0.3981 (2)0.0603 (10)
C30.7386 (7)0.1397 (6)0.4462 (2)0.0673 (11)
H30.84950.14520.47780.081*
C40.6142 (8)0.2759 (6)0.4454 (2)0.0734 (12)
H40.64010.37570.47720.088*
C50.4506 (9)0.2681 (6)0.3983 (3)0.0791 (13)
H50.37110.36460.39830.095*
C60.4009 (8)0.1202 (5)0.3506 (2)0.0702 (11)
H60.28650.11360.32010.084*
C70.5296 (7)0.0162 (5)0.3507 (2)0.0594 (10)
C80.5281 (7)0.1874 (5)0.3051 (2)0.0621 (10)
H80.58600.14520.25560.074*
C90.2634 (7)0.4695 (5)0.2608 (2)0.0601 (10)
C100.0367 (7)0.5832 (5)0.2629 (2)0.0643 (10)
H100.08390.55990.29620.077*
C110.0127 (8)0.7312 (5)0.2161 (2)0.0717 (11)
H110.16730.80490.21840.086*
C120.1583 (8)0.7737 (6)0.1661 (2)0.0704 (11)
C130.3872 (8)0.6597 (6)0.1651 (2)0.0781 (12)
H130.50710.68300.13160.094*
C140.4421 (7)0.5127 (6)0.2125 (2)0.0717 (11)
H140.59800.44320.21200.086*
C150.1054 (10)0.9338 (6)0.1145 (3)0.0890 (15)
H15A0.20800.89830.06980.107*
H15B0.05710.95230.10470.107*
C160.1391 (12)1.1171 (7)0.1414 (3)0.1084 (18)
H16A0.30211.09790.15080.130*
H16B0.03821.15070.18650.130*
C170.0844 (13)1.2847 (8)0.0908 (3)0.116 (2)
H17A0.06421.28680.07280.139*
H17B0.06361.40200.11760.139*
C180.2664 (14)1.2782 (10)0.0306 (4)0.143 (3)
H18A0.28711.16340.00330.171*
H18B0.41301.28120.04770.171*
H18C0.21981.38590.00100.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0755 (19)0.091 (2)0.085 (2)0.0365 (17)0.0207 (16)0.0157 (16)
O20.0691 (17)0.0628 (16)0.0837 (19)0.0239 (13)0.0195 (14)0.0228 (14)
N10.061 (2)0.0579 (19)0.071 (2)0.0118 (16)0.0050 (16)0.0156 (16)
C10.062 (2)0.058 (2)0.068 (2)0.0150 (19)0.005 (2)0.0097 (19)
C20.062 (2)0.054 (2)0.062 (2)0.0117 (17)0.0036 (18)0.0065 (17)
C30.074 (3)0.059 (2)0.066 (2)0.010 (2)0.011 (2)0.0105 (19)
C40.093 (3)0.051 (2)0.073 (3)0.015 (2)0.004 (2)0.013 (2)
C50.100 (3)0.051 (2)0.087 (3)0.025 (2)0.004 (3)0.003 (2)
C60.079 (3)0.050 (2)0.082 (3)0.016 (2)0.010 (2)0.006 (2)
C70.063 (2)0.047 (2)0.064 (2)0.0093 (17)0.0004 (18)0.0009 (17)
C80.067 (2)0.055 (2)0.065 (2)0.0164 (19)0.0071 (19)0.0053 (18)
C90.069 (2)0.052 (2)0.063 (2)0.0192 (18)0.0152 (19)0.0112 (18)
C100.063 (2)0.057 (2)0.071 (3)0.0130 (19)0.0016 (19)0.0022 (19)
C110.073 (3)0.051 (2)0.086 (3)0.0042 (19)0.014 (2)0.005 (2)
C120.082 (3)0.059 (2)0.072 (3)0.019 (2)0.017 (2)0.014 (2)
C130.082 (3)0.080 (3)0.074 (3)0.024 (2)0.005 (2)0.023 (2)
C140.065 (2)0.072 (3)0.076 (3)0.016 (2)0.004 (2)0.017 (2)
C150.115 (4)0.068 (3)0.089 (3)0.024 (3)0.030 (3)0.019 (2)
C160.156 (5)0.081 (3)0.098 (4)0.038 (3)0.033 (4)0.023 (3)
C170.148 (5)0.079 (3)0.116 (5)0.025 (4)0.013 (4)0.024 (3)
C180.178 (7)0.123 (5)0.107 (5)0.017 (5)0.015 (5)0.022 (4)
Geometric parameters (Å, º) top
N1—H190.99 (4)C10—C111.381 (5)
C1—O11.197 (5)C10—H100.9300
C1—O21.362 (5)C11—C121.375 (6)
C1—C21.464 (5)C11—H110.9300
C2—C71.386 (5)C12—C131.394 (6)
C2—C31.395 (5)C12—C151.506 (6)
C3—C41.363 (6)C13—C141.387 (6)
C3—H30.9300C13—H130.9300
C4—C51.380 (6)C14—H140.9300
C4—H40.9300C15—C161.495 (7)
C5—C61.391 (6)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C6—C71.382 (5)C16—C171.534 (7)
C6—H60.9300C16—H16A0.9700
C7—C81.501 (5)C16—H16B0.9700
C8—N11.400 (5)C17—C181.449 (9)
C8—O21.484 (4)C17—H17A0.9700
C8—H80.9800C17—H17B0.9700
C9—C101.381 (5)C18—H18A0.9600
C9—C141.391 (5)C18—H18B0.9600
C9—N11.402 (5)C18—H18C0.9600
C1—O2—C8110.5 (3)C12—C11—C10122.4 (4)
C8—N1—C9122.6 (3)C12—C11—H11118.8
C8—N1—H19114 (2)C10—C11—H11118.8
C9—N1—H19122 (2)C11—C12—C13116.5 (4)
O1—C1—O2120.5 (4)C11—C12—C15122.7 (4)
O1—C1—C2131.3 (4)C13—C12—C15120.8 (4)
O2—C1—C2108.2 (3)C14—C13—C12122.1 (4)
C7—C2—C3121.2 (4)C14—C13—H13118.9
C7—C2—C1109.2 (3)C12—C13—H13118.9
C3—C2—C1129.6 (4)C13—C14—C9119.9 (4)
C4—C3—C2117.8 (4)C13—C14—H14120.1
C4—C3—H3121.1C9—C14—H14120.1
C2—C3—H3121.1C16—C15—C12113.3 (4)
C3—C4—C5121.0 (4)C16—C15—H15A108.9
C3—C4—H4119.5C12—C15—H15A108.9
C5—C4—H4119.5C16—C15—H15B108.9
C4—C5—C6122.1 (4)C12—C15—H15B108.9
C4—C5—H5119.0H15A—C15—H15B107.7
C6—C5—H5119.0C15—C16—C17115.0 (5)
C7—C6—C5116.8 (4)C15—C16—H16A108.5
C7—C6—H6121.6C17—C16—H16A108.5
C5—C6—H6121.6C15—C16—H16B108.5
C6—C7—C2121.1 (3)C17—C16—H16B108.5
C6—C7—C8130.7 (4)H16A—C16—H16B107.5
C2—C7—C8108.3 (3)C18—C17—C16114.0 (6)
N1—C8—O2111.7 (3)C18—C17—H17A108.8
N1—C8—C7114.6 (3)C16—C17—H17A108.8
O2—C8—C7103.7 (3)C18—C17—H17B108.8
N1—C8—H8108.9C16—C17—H17B108.8
O2—C8—H8108.9H17A—C17—H17B107.7
C7—C8—H8108.9C17—C18—H18A109.5
C10—C9—C14118.3 (3)C17—C18—H18B109.5
C10—C9—N1119.3 (3)H18A—C18—H18B109.5
C14—C9—N1122.3 (4)C17—C18—H18C109.5
C11—C10—C9120.6 (4)H18A—C18—H18C109.5
C11—C10—H10119.7H18B—C18—H18C109.5
C9—C10—H10119.7
O1—C1—O2—C8179.2 (4)N1—C8—O2—C1123.2 (3)
C2—C1—O2—C82.3 (4)C7—C8—O2—C10.7 (4)
O1—C1—C2—C7178.6 (4)O2—C8—N1—C971.4 (4)
O2—C1—C2—C73.1 (4)C7—C8—N1—C9171.0 (3)
O1—C1—C2—C30.4 (8)C10—C9—N1—C8176.1 (4)
O2—C1—C2—C3177.9 (4)C14—C9—N1—C84.0 (6)
C7—C2—C3—C40.4 (6)C14—C9—C10—C112.7 (6)
C1—C2—C3—C4178.6 (4)N1—C9—C10—C11177.4 (4)
C2—C3—C4—C50.4 (6)C10—C9—C14—C133.9 (6)
C3—C4—C5—C61.4 (7)N1—C9—C14—C13176.2 (4)
C4—C5—C6—C72.3 (6)C9—C10—C11—C120.5 (6)
C5—C6—C7—C22.2 (6)C10—C11—C12—C130.4 (7)
C5—C6—C7—C8177.3 (4)C10—C11—C12—C15179.5 (4)
C3—C2—C7—C61.4 (6)C11—C12—C13—C140.9 (7)
C1—C2—C7—C6177.8 (4)C15—C12—C13—C14179.2 (4)
C3—C2—C7—C8178.3 (4)C12—C13—C14—C93.1 (7)
C1—C2—C7—C82.6 (4)C11—C12—C15—C1691.9 (6)
C6—C7—C8—N157.2 (6)C13—C12—C15—C1688.3 (6)
C2—C7—C8—N1123.2 (4)C12—C15—C16—C17179.3 (5)
C6—C7—C8—O2179.2 (4)C15—C16—C17—C1875.8 (8)
C2—C7—C8—O21.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H19···O1i0.99 (4)2.04 (4)3.000 (4)165 (3)
C3—H3···O1ii0.932.443.331 (5)161 (3)
C10—H10···O2i0.932.703.450 (5)139 (1)
C6—H6···Cg1iii0.932.94 (3)3.635 (4)133 (1)
C17—H17B···Cg1iv0.972.78 (3)3.663 (6)151 (1)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H19NO2
Mr281.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.8603 (7), 7.2525 (9), 18.875 (2)
α, β, γ (°)89.268 (10), 82.734 (10), 76.045 (10)
V3)772.18 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.71 × 0.33 × 0.07
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.960, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
16234, 3002, 1669
Rint0.105
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.249, 1.05
No. of reflections3002
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H19···O1i0.99 (4)2.04 (4)3.000 (4)165 (3)
C3—H3···O1ii0.932.443.331 (5)161 (3)
C10—H10···O2i0.932.703.450 (5)138.9 (1)
C6—H6···Cg1iii0.932.94 (3)3.635 (4)133.3 (4)
C17—H17B···Cg1iv0.972.78 (3)3.663 (6)150.9 (4)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds