Download citation
Download citation
link to html
The title compound, [Cu(C4H6O5)(C6H2N2O)(H2O)], has a six-coordinate CuII atom in a Jahn–Teller-distorted octa­hedral environment, coordinated by a tridentate oxydiacetate dianion, a bidentate pyridine-2-carboxamide ligand and a water mol­ecule. The oxydiacetate chelates the CuII atom in a facial configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059144/im2044sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059144/im2044Isup2.hkl
Contains datablock I

CCDC reference: 672711

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.062
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O4 .. 5.84 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C8
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The present work is a continuation of earlier studies of the preparation, and structure of copper(II) complexes with pyridine-2-carboxamide (C6H6N2O, pca) and dicarboxylic acids (Sieroń, 2004; 2007).

The structure of the title compound, (I), is shown in Fig. 1. The CuII atom shows a typical Jahn-Teller distorted octahedral environment. In the basal plane Cu is bound to O and N atoms of pca [1.979 (1) and 2.013 (1) Å for Cu1–O1 and Cu1–N1, respectively], to two terminal carboxylate O atoms from the oda ligand [1.944 (1) and 1.958 (1) Å for Cu1–O2 and Cu1–O5, respectively]. The apical positions are occupied by the central O atom of oda [Cu1–O4 = 2.413 (1) Å] and by the water ligand [Cu1–O7 = 2.306 (2) Å]. The octahedral (4 + 2) coordination is distinctly deformed, with the O4–Cu1–O7 angle between the axial bonds measuring to 159.59 (6)°.

The tridentate oda dianion chelates to the CuII atom in a facial coordination mode via O2, O4 and O5. The Cu1/O2/C7/C8/O4 ring is essentially planar with only atom C7 being displaced by 0.076 (3) Å out of the mean plane of the other atoms. The Cu1/O4/C9/C10/O5 ring is twisted about the Cu—O4 bond, with the puckering defined by Q(2) = 0.3236 (12) Å and ϕ(2)= 190.0 (3) ° (Cremer & Pople, 1975) and the pseudorotation parameters P = 348.9 (3) and τ(M) = 26.1 (1) ° (Rao et al., 1981).

The individual carboxylate ions are differently involved in the intermolecular hydrogen-bond system. In the C7/O2/O3 group, only O2 is engaged in hydrogen bonding (as an unsymmetrical bifurcated acceptor). The C10/O5/O6 group forms intermolecular hydrogen bonds in which both O5 and O6 (bifurcatedly) are engaged. This causes distinctly different delocalization of π-bonds in both carboxylic groups. The bonds C7—O2 [1.288 (2) Å] and C7—O3 [1.223 (2) Å] are differentiated, while C10—O5 [1.262 (2) Å] and C10—O6 [1.246 (2) Å] are very similar.

Neighbouring CuII complex molecules are also linked through π···π stacking interactions, with distances between ring centroids Cg···Cg(2 - x, 1 - y, 1 - z) of 3.7350 (9) Å.

Related literature top

For related structures, see: Sieroń (2004, 2007). For related literature, see: Cremer & Pople (1975); Rao et al. (1981); Watanabe et al. (1973).

Experimental top

A mixture of 2-pyridinecarbonitrile (2 mmol) and copper(II) oxydiacetate (2 mmol) in water (60 ml) was heated to boiling. When the solution became dark blue, indicating the copper-assisted hydrolysis of 2-pyridinecarbonitrile to pyridine-2-carboxamide (Watanabe et al., 1973), it was filtered and allowed to cool to room temperature. After a few days, blue crystals of the title compound were obtained.

Refinement top

The amine and water H atoms were located in a difference Fourier synthesis and their positions and isotropic displacement parameters were refined freely. The remaining H atoms were positioned with idealized geometry, with C–H = 0.93 or 0.97 Å, and refined with fixed isotropic displacement parameters using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2003); molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Aqua(oxydiacetato-κ3O,O',O'')(pyridine-2-carboxamide- κ2N1,O)copper(II) top
Crystal data top
[Cu(C4H6O5)(C6H2N2O)(H2O)]F(000) = 684
Mr = 335.77Dx = 1.805 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7383 reflections
a = 7.7355 (1) Åθ = 2.7–29.9°
b = 13.2772 (2) ŵ = 1.80 mm1
c = 12.4147 (2) ÅT = 296 K
β = 104.333 (2)°Prism, blue
V = 1235.37 (3) Å30.30 × 0.24 × 0.12 mm
Z = 4
Data collection top
Kuma KM-4 CCD
diffractometer
2688 independent reflections
Radiation source: CX-Mo12x0.4-S Seifert Mo tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8.2356 pixels mm-1θmax = 27.0°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1616
Tmin = 0.596, Tmax = 0.814l = 1515
13400 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5556P]
where P = (Fo2 + 2Fc2)/3
2688 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C4H6O5)(C6H2N2O)(H2O)]V = 1235.37 (3) Å3
Mr = 335.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7355 (1) ŵ = 1.80 mm1
b = 13.2772 (2) ÅT = 296 K
c = 12.4147 (2) Å0.30 × 0.24 × 0.12 mm
β = 104.333 (2)°
Data collection top
Kuma KM-4 CCD
diffractometer
2688 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2438 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.814Rint = 0.010
13400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
2688 reflectionsΔρmin = 0.29 e Å3
197 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91871 (2)0.79729 (1)0.46233 (2)0.0278 (1)
O10.82820 (17)0.72202 (9)0.32210 (10)0.0361 (4)
O20.99275 (16)0.85784 (10)0.60908 (10)0.0371 (4)
O30.9346 (2)0.89120 (13)0.77194 (12)0.0595 (5)
O40.68592 (16)0.74097 (9)0.54645 (10)0.0340 (3)
O50.72887 (15)0.89632 (9)0.41005 (11)0.0354 (4)
O60.43811 (17)0.92043 (12)0.35059 (12)0.0495 (4)
O71.1011 (3)0.90533 (14)0.39538 (19)0.0637 (7)
N11.08345 (18)0.67767 (10)0.49316 (11)0.0279 (4)
N20.8586 (2)0.58362 (13)0.22552 (13)0.0368 (5)
C10.9078 (2)0.64115 (12)0.31296 (13)0.0280 (4)
C21.0604 (2)0.61205 (12)0.40834 (13)0.0268 (4)
C31.1611 (2)0.52483 (13)0.41424 (15)0.0343 (5)
C41.2872 (2)0.50461 (14)0.51251 (16)0.0391 (6)
C51.3100 (2)0.57096 (14)0.60005 (16)0.0393 (5)
C61.2065 (2)0.65726 (13)0.58795 (14)0.0336 (5)
C70.8996 (2)0.84925 (13)0.68138 (14)0.0354 (5)
C80.7381 (3)0.7809 (2)0.65578 (16)0.0530 (7)
C90.5314 (2)0.78558 (15)0.47609 (16)0.0393 (6)
C100.5693 (2)0.87439 (13)0.40789 (14)0.0327 (5)
H10.758 (3)0.5959 (17)0.1771 (19)0.045 (6)*
H20.913 (3)0.5324 (19)0.2210 (18)0.042 (6)*
H31.144500.481200.354000.0410*
H41.356000.446400.519200.0470*
H51.393900.558000.666400.0470*
H61.222500.702300.646900.0400*
H8A0.761500.725000.707700.0640*
H8B0.638000.818200.669800.0640*
H9A0.453400.808000.521600.0470*
H9B0.467800.734500.425700.0470*
H711.187 (4)0.906 (2)0.383 (2)0.064 (9)*
H721.072 (4)0.958 (3)0.398 (3)0.091 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0264 (1)0.0288 (1)0.0271 (1)0.0030 (1)0.0047 (1)0.0014 (1)
O10.0380 (7)0.0355 (6)0.0293 (6)0.0073 (5)0.0018 (5)0.0024 (5)
O20.0359 (6)0.0421 (7)0.0321 (6)0.0048 (5)0.0061 (5)0.0076 (5)
O30.0683 (10)0.0699 (10)0.0408 (8)0.0023 (8)0.0146 (7)0.0230 (7)
O40.0342 (6)0.0335 (6)0.0326 (6)0.0013 (5)0.0053 (5)0.0042 (5)
O50.0277 (6)0.0325 (6)0.0473 (7)0.0038 (5)0.0116 (5)0.0102 (5)
O60.0296 (6)0.0592 (9)0.0576 (8)0.0065 (6)0.0071 (6)0.0241 (7)
O70.0475 (10)0.0430 (9)0.1135 (16)0.0028 (7)0.0446 (10)0.0180 (9)
N10.0264 (7)0.0295 (7)0.0270 (7)0.0000 (5)0.0051 (5)0.0013 (5)
N20.0400 (9)0.0366 (8)0.0308 (7)0.0006 (7)0.0033 (7)0.0056 (6)
C10.0285 (8)0.0306 (8)0.0257 (7)0.0023 (6)0.0085 (6)0.0014 (6)
C20.0253 (7)0.0293 (7)0.0271 (7)0.0025 (6)0.0088 (6)0.0016 (6)
C30.0333 (9)0.0318 (8)0.0402 (9)0.0009 (7)0.0139 (7)0.0022 (7)
C40.0310 (9)0.0328 (9)0.0537 (11)0.0064 (7)0.0109 (8)0.0085 (8)
C50.0310 (9)0.0413 (10)0.0405 (9)0.0015 (7)0.0007 (7)0.0107 (8)
C60.0317 (8)0.0354 (9)0.0299 (8)0.0013 (7)0.0006 (7)0.0015 (7)
C70.0384 (9)0.0347 (9)0.0314 (8)0.0075 (7)0.0057 (7)0.0031 (7)
C80.0476 (12)0.0834 (16)0.0287 (9)0.0130 (11)0.0110 (8)0.0006 (10)
C90.0289 (9)0.0457 (10)0.0419 (10)0.0035 (7)0.0060 (7)0.0116 (8)
C100.0295 (8)0.0356 (8)0.0330 (8)0.0013 (7)0.0077 (7)0.0034 (7)
Geometric parameters (Å, º) top
Cu1—O11.9789 (12)N2—H10.87 (2)
Cu1—O21.9435 (12)N2—H20.81 (2)
Cu1—O42.4132 (13)C1—C21.501 (2)
Cu1—O51.9582 (12)C2—C31.387 (2)
Cu1—O72.306 (2)C3—C41.387 (3)
Cu1—N12.0128 (14)C4—C51.376 (3)
O1—C11.257 (2)C5—C61.385 (2)
O2—C71.288 (2)C7—C81.513 (3)
O3—C71.223 (2)C9—C101.522 (3)
O4—C81.420 (2)C3—H30.93
O4—C91.423 (2)C4—H40.93
O5—C101.262 (2)C5—H50.93
O6—C101.246 (2)C6—H60.93
O7—H710.72 (3)C8—H8A0.97
O7—H720.74 (4)C8—H8B0.97
N1—C21.344 (2)C9—H9A0.97
N1—C61.345 (2)C9—H9B0.97
N2—C11.305 (2)
O1—Cu1—O2172.55 (5)N1—C2—C3122.40 (15)
O1—Cu1—O494.87 (5)C1—C2—C3125.32 (15)
O1—Cu1—O588.54 (5)N1—C2—C1112.15 (14)
O1—Cu1—O796.42 (7)C2—C3—C4118.13 (16)
O1—Cu1—N180.69 (5)C3—C4—C5119.71 (16)
O2—Cu1—O478.51 (5)C4—C5—C6119.11 (17)
O2—Cu1—O593.20 (5)N1—C6—C5121.77 (16)
O2—Cu1—O790.91 (7)O2—C7—O3124.44 (16)
O2—Cu1—N197.03 (5)O2—C7—C8118.83 (15)
O4—Cu1—O576.87 (5)O3—C7—C8116.71 (16)
O4—Cu1—O7159.59 (6)O4—C8—C7116.71 (17)
O4—Cu1—N1100.27 (5)O4—C9—C10114.56 (13)
O5—Cu1—O786.47 (7)O6—C10—C9117.13 (15)
O5—Cu1—N1168.63 (5)O5—C10—O6123.58 (16)
O7—Cu1—N198.30 (7)O5—C10—C9119.28 (15)
Cu1—O1—C1115.87 (11)C2—C3—H3121
Cu1—O2—C7122.07 (11)C4—C3—H3121
Cu1—O4—C8103.42 (12)C3—C4—H4120
Cu1—O4—C9102.05 (9)C5—C4—H4120
C8—O4—C9115.36 (15)C4—C5—H5120
Cu1—O5—C10120.09 (11)C6—C5—H5120
Cu1—O7—H72111 (3)N1—C6—H6119
H71—O7—H72108 (3)C5—C6—H6119
Cu1—O7—H71140 (2)O4—C8—H8A108
C2—N1—C6118.86 (14)O4—C8—H8B108
Cu1—N1—C2114.05 (11)C7—C8—H8A108
Cu1—N1—C6127.08 (11)C7—C8—H8B108
C1—N2—H2120.0 (16)H8A—C8—H8B107
H1—N2—H2120 (2)O4—C9—H9A109
C1—N2—H1119.4 (15)O4—C9—H9B109
N2—C1—C2121.08 (15)C10—C9—H9A109
O1—C1—N2121.79 (15)C10—C9—H9B109
O1—C1—C2117.12 (14)H9A—C9—H9B108
O4—Cu1—O1—C1101.07 (12)Cu1—O1—C1—N2178.58 (13)
O5—Cu1—O1—C1177.75 (12)Cu1—O1—C1—C20.16 (18)
O7—Cu1—O1—C195.97 (13)Cu1—O2—C7—O3175.11 (14)
N1—Cu1—O1—C11.43 (12)Cu1—O2—C7—C86.6 (2)
O4—Cu1—O2—C72.54 (13)Cu1—O4—C8—C75.4 (2)
O5—Cu1—O2—C773.36 (13)C9—O4—C8—C7105.2 (2)
O7—Cu1—O2—C7159.88 (14)Cu1—O4—C9—C1020.20 (16)
N1—Cu1—O2—C7101.65 (13)C8—O4—C9—C1091.13 (19)
O1—Cu1—O4—C8174.68 (12)Cu1—O5—C10—O6160.48 (14)
O1—Cu1—O4—C965.25 (11)Cu1—O5—C10—C918.0 (2)
O2—Cu1—O4—C81.89 (12)Cu1—N1—C2—C13.65 (17)
O2—Cu1—O4—C9118.18 (11)Cu1—N1—C2—C3179.72 (13)
O5—Cu1—O4—C897.97 (13)C6—N1—C2—C1174.91 (14)
O5—Cu1—O4—C922.11 (10)C6—N1—C2—C31.2 (2)
O7—Cu1—O4—C861.9 (2)Cu1—N1—C6—C5178.63 (12)
O7—Cu1—O4—C958.2 (2)C2—N1—C6—C50.3 (2)
N1—Cu1—O4—C893.28 (13)O1—C1—C2—N12.6 (2)
N1—Cu1—O4—C9146.65 (10)O1—C1—C2—C3178.53 (16)
O1—Cu1—O5—C1072.95 (13)N2—C1—C2—N1176.16 (15)
O2—Cu1—O5—C1099.81 (13)N2—C1—C2—C30.2 (3)
O4—Cu1—O5—C1022.39 (12)N1—C2—C3—C41.3 (2)
O7—Cu1—O5—C10169.48 (14)C1—C2—C3—C4174.25 (15)
O1—Cu1—N1—C22.90 (11)C2—C3—C4—C50.5 (2)
O1—Cu1—N1—C6175.52 (15)C3—C4—C5—C60.3 (3)
O2—Cu1—N1—C2175.73 (11)C4—C5—C6—N10.4 (3)
O2—Cu1—N1—C62.69 (15)O2—C7—C8—O48.3 (3)
O4—Cu1—N1—C296.20 (11)O3—C7—C8—O4173.30 (18)
O4—Cu1—N1—C682.22 (14)O4—C9—C10—O56.2 (2)
O7—Cu1—N1—C292.31 (12)O4—C9—C10—O6175.28 (15)
O7—Cu1—N1—C689.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.87 (2)2.11 (2)2.946 (2)161 (2)
N2—H2···O5ii0.81 (2)2.50 (2)2.985 (2)120 (2)
N2—H2···O6ii0.81 (2)2.20 (2)2.966 (2)158 (2)
O7—H71···O6iii0.72 (3)2.09 (3)2.804 (3)175 (3)
O7—H72···O2iv0.74 (4)2.49 (4)3.225 (2)171 (4)
C3—H3···O6ii0.932.593.474 (2)159
C5—H5···O3v0.932.603.251 (2)128
C6—H6···O1vi0.932.353.248 (2)162
C9—H9B···O3i0.972.503.399 (3)154
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+2, z+1; (v) x+5/2, y1/2, z+3/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H6O5)(C6H2N2O)(H2O)]
Mr335.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.7355 (1), 13.2772 (2), 12.4147 (2)
β (°) 104.333 (2)
V3)1235.37 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.30 × 0.24 × 0.12
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.596, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
13400, 2688, 2438
Rint0.010
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.062, 1.06
No. of reflections2688
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2003), SHELXTL and Mercury (Macrae et al., 2006), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.87 (2)2.11 (2)2.946 (2)161 (2)
N2—H2···O5ii0.81 (2)2.50 (2)2.985 (2)120 (2)
N2—H2···O6ii0.81 (2)2.20 (2)2.966 (2)158 (2)
O7—H71···O6iii0.72 (3)2.09 (3)2.804 (3)175 (3)
O7—H72···O2iv0.74 (4)2.49 (4)3.225 (2)171 (4)
C3—H3···O6ii0.932.593.474 (2)159
C5—H5···O3v0.932.603.251 (2)128
C6—H6···O1vi0.932.353.248 (2)162
C9—H9B···O3i0.972.503.399 (3)154
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+2, z+1; (v) x+5/2, y1/2, z+3/2; (vi) x+1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds