Download citation
Download citation
link to html
The title complex, [MnCl2(C7H7N2O)(C7H8N2O)] or [MnCl2{(py)C(Me)NOH}{(py)C(Me)NO}] (py is pyrid­yl), has been prepared by the reaction of (py)C(Me)NOH with MnCl2. The metal ion is coordinated by a chloride ligand, an N,N′-chelating (py)C(Me)NOH mol­ecule and a (py)C(Me)NO molecule. The six-coordinate mol­ecule is the ciscistrans isomer considering the positions of the coordinated Cl atoms, pyridyl and oxime N atoms, respectively. There is an intra­molecular O—H...Cl hydrogen bond. The mol­ecules are linked by inter­molecular C—H...O and C—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807062605/kp2148sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807062605/kp2148Isup2.hkl
Contains datablock I

CCDC reference: 655812

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.105
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H13 .. CL1 .. 2.90 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. CL2 .. 2.89 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There is currently a renewed interest in the coordination chemistry of oximes (Chaudhuri, 2003; Pavlishchuk et al., 2003; Bokach et al., 2002) and their application of metal ion/oxime systems as simple and efficient catalysts (Kopylovich et al., 2002) and use of oxim ligands in synthesis of coordination polymers with interesting magnetic properties (Clerac et al., 2002). Due to the above reasons, we used (py)C(Me)NOH as ligand, and obtained the title complex [MnCl2{(py)C(Me)NOH}{(py)C(Me)NO}].

The complex (Fig. 1) consists of two methyl(2-pyridyl)ketooxime, Mn2+ and two Cl1-. The coordination geometry around the Mn centre is a distorted octahedron with a MnN4Cl2 ligand (Table 1). The N1 atom of methyl(2-pyridyl)ketooxime and Cl2 occupy the axial sites. The N2, N3, N4 and Cl1 are in the equatorial plane. The six-coordinate molecule is the cis–cis–trans isomer considering the positions of the coordinated chlorin atoms, pyridyl and oxime nitrogen atoms, respectively. The arrangement of the oxime groups seems unfavoruable, most probably due to the steric hindrance of the methyl groups. There is an intramolecular O1—H1···Cl2 hydrogen bond. The molecules are linked into a three-dimensional-network by intermolecular O1—H1···Cl2, C5—H5···Cl1, C13—H13···Cl1 hydrogen bonds (Table 2, Fig. 2).

Related literature top

For the use of oximes, see: Chaudhuri (2003). For theoretical research, see: Pavlishchuk et al. (2003); Bokach et al. (2002). For the properties of related complexes, see: Kopylovich et al. (2002); Clerac et al. (2002).

Experimental top

A solution of MnCl2 (0.126 g, 1.0 mmol) in MeOH (10 ml) was added to a solution of (py)C(Me)NOH (0.136 g, 1.0 mmol) in MeOH (10 ml). The resulting yellow solution was stirred for about 5 h and was then allowed to slowly concentrate by solvent evaporation at room temperature. Yellow block crystals suitable for X-ray diffraction were obtained within a week. The elemental analysis calculated for C14H15N4O2Cl2Mn: C 42.34, H 3.81, N 14.11%; found: C 42.31, H 4.29, N 14.26%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H 0.82, C—H 0.96 (methyl) Å [Uiso(H) = 1.5Ueq(O, C)] and C—H 0.93 (pyridyl) Å [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SMART (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title complex showing the 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond O1—H···Cl2 is shown.
Dichlorido[1-(2-pyridyl)ethanone oximato][1-(2-pyridyl)ethanone oxime]manganese(III) top
Crystal data top
[MnCl2(C7H7N2O)(C7H8N2O)]F(000) = 808
Mr = 397.14Dx = 1.509 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 2984 reflections
a = 8.908 (4) Åθ = 2.2–26.9°
b = 10.590 (5) ŵ = 1.07 mm1
c = 18.555 (8) ÅT = 298 K
β = 92.604 (5)°Block, yellow
V = 1748.5 (14) Å30.56 × 0.54 × 0.21 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3091 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.585, Tmax = 0.806k = 1210
8539 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 0.6261P]
where P = (Fo2 + 2Fc2)/3
3091 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[MnCl2(C7H7N2O)(C7H8N2O)]V = 1748.5 (14) Å3
Mr = 397.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.908 (4) ŵ = 1.07 mm1
b = 10.590 (5) ÅT = 298 K
c = 18.555 (8) Å0.56 × 0.54 × 0.21 mm
β = 92.604 (5)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3091 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2202 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.806Rint = 0.051
8539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3091 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.15081 (5)0.24776 (4)0.13664 (2)0.03510 (16)
Cl10.05850 (10)0.22964 (9)0.26055 (5)0.0536 (3)
Cl20.04571 (9)0.13122 (9)0.07088 (5)0.0522 (3)
N10.3852 (3)0.2859 (2)0.18742 (13)0.0365 (6)
N20.3083 (3)0.0899 (2)0.10980 (14)0.0400 (6)
N30.2301 (3)0.3592 (2)0.03647 (13)0.0417 (6)
N40.0901 (3)0.4516 (3)0.14395 (14)0.0430 (7)
O10.2664 (2)0.0104 (2)0.06551 (13)0.0569 (6)
H10.17600.00660.05540.085*
O20.0174 (3)0.4952 (3)0.20388 (13)0.0680 (7)
C10.5587 (4)0.0045 (4)0.10622 (19)0.0577 (10)
H1A0.50600.07140.08100.087*
H1B0.61110.03790.14830.087*
H1C0.62940.03320.07520.087*
C20.4482 (3)0.0938 (3)0.12842 (16)0.0365 (7)
C30.4945 (3)0.2005 (3)0.17488 (16)0.0355 (7)
C40.6376 (3)0.2146 (4)0.20532 (19)0.0483 (9)
H40.71280.15720.19510.058*
C50.6676 (4)0.3144 (4)0.2510 (2)0.0557 (10)
H50.76320.32390.27270.067*
C60.5578 (4)0.3997 (4)0.26474 (19)0.0523 (9)
H60.57640.46770.29560.063*
C70.4185 (3)0.3815 (3)0.23132 (18)0.0466 (8)
H70.34340.43980.24000.056*
C80.0950 (5)0.6723 (4)0.1065 (2)0.0685 (11)
H8A0.01580.68420.13920.103*
H8B0.06530.70730.06030.103*
H8C0.18430.71390.12510.103*
C90.1253 (3)0.5351 (3)0.09853 (17)0.0419 (8)
C100.2051 (3)0.4845 (3)0.03611 (16)0.0401 (7)
C110.2517 (4)0.5605 (4)0.0193 (2)0.0654 (11)
H110.23190.64670.01930.078*
C120.3272 (5)0.5069 (5)0.0742 (2)0.0829 (14)
H120.36100.55710.11120.099*
C130.3526 (5)0.3809 (5)0.0744 (2)0.0735 (12)
H130.40270.34310.11170.088*
C140.3025 (4)0.3100 (4)0.01807 (19)0.0596 (10)
H140.32020.22350.01810.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0341 (3)0.0337 (3)0.0380 (3)0.0027 (2)0.0069 (2)0.0009 (2)
Cl10.0518 (5)0.0658 (7)0.0444 (5)0.0005 (4)0.0167 (4)0.0051 (4)
Cl20.0456 (5)0.0547 (6)0.0558 (5)0.0049 (4)0.0042 (4)0.0049 (4)
N10.0355 (14)0.0350 (15)0.0394 (14)0.0000 (11)0.0056 (11)0.0044 (12)
N20.0417 (15)0.0315 (15)0.0469 (16)0.0014 (11)0.0039 (12)0.0030 (13)
N30.0533 (16)0.0377 (17)0.0350 (14)0.0049 (13)0.0112 (12)0.0002 (12)
N40.0471 (15)0.0430 (17)0.0396 (14)0.0097 (13)0.0105 (12)0.0047 (13)
O10.0545 (14)0.0466 (15)0.0691 (16)0.0009 (11)0.0037 (12)0.0186 (14)
O20.0813 (18)0.0650 (18)0.0600 (15)0.0189 (14)0.0304 (14)0.0164 (14)
C10.054 (2)0.053 (2)0.067 (2)0.0174 (18)0.0070 (18)0.011 (2)
C20.0404 (18)0.0336 (18)0.0360 (17)0.0069 (14)0.0077 (14)0.0069 (15)
C30.0335 (17)0.0365 (18)0.0370 (17)0.0009 (14)0.0088 (13)0.0098 (15)
C40.0340 (18)0.052 (2)0.060 (2)0.0043 (15)0.0057 (16)0.0054 (18)
C50.041 (2)0.063 (3)0.063 (2)0.0115 (18)0.0058 (17)0.002 (2)
C60.051 (2)0.051 (2)0.054 (2)0.0119 (17)0.0011 (17)0.0055 (18)
C70.0432 (19)0.045 (2)0.053 (2)0.0011 (15)0.0079 (15)0.0063 (17)
C80.098 (3)0.039 (2)0.069 (3)0.015 (2)0.005 (2)0.003 (2)
C90.0428 (18)0.039 (2)0.0429 (19)0.0059 (15)0.0059 (14)0.0022 (16)
C100.0445 (18)0.0369 (19)0.0386 (17)0.0011 (15)0.0007 (14)0.0056 (16)
C110.083 (3)0.049 (2)0.065 (3)0.003 (2)0.010 (2)0.017 (2)
C120.111 (4)0.085 (4)0.056 (3)0.004 (3)0.037 (3)0.027 (3)
C130.096 (3)0.083 (4)0.044 (2)0.012 (3)0.029 (2)0.007 (2)
C140.078 (3)0.057 (3)0.045 (2)0.013 (2)0.0207 (19)0.0011 (19)
Geometric parameters (Å, º) top
Mn1—N42.231 (3)C4—C51.375 (5)
Mn1—N22.252 (3)C4—H40.9300
Mn1—N12.288 (3)C5—C61.364 (5)
Mn1—N32.338 (3)C5—H50.9300
Mn1—Cl22.4254 (11)C6—C71.375 (4)
Mn1—Cl12.4840 (13)C6—H60.9300
N1—C71.325 (4)C7—H70.9300
N1—C31.357 (4)C8—C91.486 (5)
N2—C21.278 (4)C8—H8A0.9600
N2—O11.385 (3)C8—H8B0.9600
N3—C141.331 (4)C8—H8C0.9600
N3—C101.345 (4)C9—C101.486 (4)
N4—C91.271 (4)C10—C111.383 (5)
N4—O21.391 (3)C11—C121.368 (6)
O1—H10.8200C11—H110.9300
C1—C21.503 (4)C12—C131.354 (6)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.377 (5)
C1—H1C0.9600C13—H130.9300
C2—C31.469 (4)C14—H140.9300
C3—C41.378 (4)
N4—Mn1—N2152.45 (10)N1—C3—C2115.4 (3)
N4—Mn1—N191.34 (9)C4—C3—C2123.6 (3)
N2—Mn1—N169.88 (9)C5—C4—C3119.1 (3)
N4—Mn1—N369.06 (9)C5—C4—H4120.5
N2—Mn1—N389.15 (9)C3—C4—H4120.5
N1—Mn1—N386.28 (9)C6—C5—C4120.2 (3)
N4—Mn1—Cl2110.57 (7)C6—C5—H5119.9
N2—Mn1—Cl287.35 (8)C4—C5—H5119.9
N1—Mn1—Cl2157.17 (7)C5—C6—C7117.6 (3)
N3—Mn1—Cl295.40 (7)C5—C6—H6121.2
N4—Mn1—Cl185.82 (7)C7—C6—H6121.2
N2—Mn1—Cl1112.52 (7)N1—C7—C6123.8 (3)
N1—Mn1—Cl188.10 (7)N1—C7—H7118.1
N3—Mn1—Cl1154.09 (7)C6—C7—H7118.1
Cl2—Mn1—Cl199.47 (4)C9—C8—H8A109.5
C7—N1—C3118.2 (3)C9—C8—H8B109.5
C7—N1—Mn1124.3 (2)H8A—C8—H8B109.5
C3—N1—Mn1117.4 (2)C9—C8—H8C109.5
C2—N2—O1114.7 (2)H8A—C8—H8C109.5
C2—N2—Mn1121.7 (2)H8B—C8—H8C109.5
O1—N2—Mn1123.18 (17)N4—C9—C8124.3 (3)
C14—N3—C10117.9 (3)N4—C9—C10114.0 (3)
C14—N3—Mn1125.5 (2)C8—C9—C10121.7 (3)
C10—N3—Mn1116.5 (2)N3—C10—C11121.5 (3)
C9—N4—O2115.9 (3)N3—C10—C9115.9 (3)
C9—N4—Mn1124.4 (2)C11—C10—C9122.6 (3)
O2—N4—Mn1119.5 (2)C12—C11—C10119.1 (4)
N2—O1—H1109.5C12—C11—H11120.5
C2—C1—H1A109.5C10—C11—H11120.5
C2—C1—H1B109.5C13—C12—C11119.9 (4)
H1A—C1—H1B109.5C13—C12—H12120.0
C2—C1—H1C109.5C11—C12—H12120.0
H1A—C1—H1C109.5C12—C13—C14118.3 (4)
H1B—C1—H1C109.5C12—C13—H13120.8
N2—C2—C3115.3 (3)C14—C13—H13120.8
N2—C2—C1123.1 (3)N3—C14—C13123.3 (4)
C3—C2—C1121.5 (3)N3—C14—H14118.4
N1—C3—C4121.0 (3)C13—C14—H14118.4
N4—Mn1—N1—C726.1 (3)Cl1—Mn1—N4—O25.3 (2)
N2—Mn1—N1—C7174.5 (3)O1—N2—C2—C3179.4 (2)
N3—Mn1—N1—C795.0 (3)Mn1—N2—C2—C36.4 (4)
Cl2—Mn1—N1—C7169.89 (19)O1—N2—C2—C11.8 (4)
Cl1—Mn1—N1—C759.7 (2)Mn1—N2—C2—C1174.8 (2)
N4—Mn1—N1—C3157.9 (2)C7—N1—C3—C41.8 (4)
N2—Mn1—N1—C31.4 (2)Mn1—N1—C3—C4178.0 (2)
N3—Mn1—N1—C389.0 (2)C7—N1—C3—C2177.3 (3)
Cl2—Mn1—N1—C36.1 (3)Mn1—N1—C3—C21.0 (3)
Cl1—Mn1—N1—C3116.3 (2)N2—C2—C3—N14.7 (4)
N4—Mn1—N2—C245.2 (3)C1—C2—C3—N1176.5 (3)
N1—Mn1—N2—C24.4 (2)N2—C2—C3—C4174.3 (3)
N3—Mn1—N2—C281.9 (2)C1—C2—C3—C44.5 (5)
Cl2—Mn1—N2—C2177.4 (2)N1—C3—C4—C52.3 (5)
Cl1—Mn1—N2—C283.5 (2)C2—C3—C4—C5176.7 (3)
N4—Mn1—N2—O1127.2 (2)C3—C4—C5—C61.3 (5)
N1—Mn1—N2—O1176.8 (2)C4—C5—C6—C70.1 (5)
N3—Mn1—N2—O190.5 (2)C3—N1—C7—C60.3 (5)
Cl2—Mn1—N2—O15.0 (2)Mn1—N1—C7—C6176.2 (3)
Cl1—Mn1—N2—O1104.1 (2)C5—C6—C7—N10.6 (5)
N4—Mn1—N3—C14179.7 (3)O2—N4—C9—C80.6 (5)
N2—Mn1—N3—C1416.9 (3)Mn1—N4—C9—C8175.0 (2)
N1—Mn1—N3—C1486.8 (3)O2—N4—C9—C10178.9 (2)
Cl2—Mn1—N3—C1470.3 (3)Mn1—N4—C9—C103.2 (4)
Cl1—Mn1—N3—C14164.7 (2)C14—N3—C10—C110.6 (5)
N4—Mn1—N3—C102.6 (2)Mn1—N3—C10—C11177.9 (3)
N2—Mn1—N3—C10160.2 (2)C14—N3—C10—C9179.4 (3)
N1—Mn1—N3—C1090.3 (2)Mn1—N3—C10—C92.1 (3)
Cl2—Mn1—N3—C10112.6 (2)N4—C9—C10—N30.5 (4)
Cl1—Mn1—N3—C1012.4 (3)C8—C9—C10—N3177.8 (3)
N2—Mn1—N4—C936.6 (4)N4—C9—C10—C11179.5 (3)
N1—Mn1—N4—C982.2 (3)C8—C9—C10—C112.2 (5)
N3—Mn1—N4—C93.3 (2)N3—C10—C11—C121.2 (6)
Cl2—Mn1—N4—C991.2 (3)C9—C10—C11—C12178.7 (3)
Cl1—Mn1—N4—C9170.2 (3)C10—C11—C12—C131.3 (7)
N2—Mn1—N4—O2138.9 (2)C11—C12—C13—C140.8 (7)
N1—Mn1—N4—O293.3 (2)C10—N3—C14—C130.0 (6)
N3—Mn1—N4—O2178.8 (2)Mn1—N3—C14—C13177.1 (3)
Cl2—Mn1—N4—O293.3 (2)C12—C13—C14—N30.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl1i0.932.903.821 (4)170
C5—H5···Cl1ii0.932.833.592 (4)140
O1—H1···Cl2iii0.822.893.385 (3)121
O1—H1···Cl20.822.483.166 (3)141
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C7H7N2O)(C7H8N2O)]
Mr397.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.908 (4), 10.590 (5), 18.555 (8)
β (°) 92.604 (5)
V3)1748.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.56 × 0.54 × 0.21
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.585, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
8539, 3091, 2202
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.00
No. of reflections3091
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Mn1—N42.231 (3)Mn1—N32.338 (3)
Mn1—N22.252 (3)Mn1—Cl22.4254 (11)
Mn1—N12.288 (3)Mn1—Cl12.4840 (13)
N4—Mn1—N2152.45 (10)N2—Mn1—Cl287.35 (8)
N4—Mn1—N191.34 (9)N1—Mn1—Cl2157.17 (7)
N2—Mn1—N169.88 (9)N3—Mn1—Cl295.40 (7)
N4—Mn1—N369.06 (9)N4—Mn1—Cl185.82 (7)
N2—Mn1—N389.15 (9)N2—Mn1—Cl1112.52 (7)
N1—Mn1—N386.28 (9)N1—Mn1—Cl188.10 (7)
N4—Mn1—Cl2110.57 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl1i0.932.903.821 (4)169.5
C5—H5···Cl1ii0.932.833.592 (4)139.7
O1—H1···Cl2iii0.822.893.385 (3)121.3
O1—H1···Cl20.822.483.166 (3)141.3
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds