Download citation
Download citation
link to html
In the title mol­ecule, [Fe(C5H5)(C19H15N2)], the five-membered C3N2 imidazole ring forms dihedral angles of 84.71 (13) and 52.12 (11)°, respectively, with the substituted cyclo­penta­dienyl and phenyl rings. In the crystal structure, in addition to a weak C—H...N inter­action, there is a modest C—H...π(ring) inter­action involving a C—H group of the unsubstituted cyclo­penta­dienyl ring and the imidazole ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053561/lh2536sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053561/lh2536Isup2.hkl
Contains datablock I

CCDC reference: 672576

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.037
  • wR factor = 0.093
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.27 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe1 PLAT480_ALERT_4_C Long H...A H-Bond Reported H23 .. N1 .. 2.69 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 28.00 From the CIF: _reflns_number_total 2555 Count of symmetry unique reflns 2348 Completeness (_total/calc) 108.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 207 Fraction of Friedel pairs measured 0.088 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.87 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Benzimidazole systems continue to attract much attention in chemical synthesis, structural science and applied biological research (Li et al., 1998; Gallagher, Hanlon & Howarth, 2001; Howarth & Hanlon, 2001; Gallagher, Hanlon, Howarth & Thomas, 2001; Kazak et al., 2006). The title compound, 1-Ferrocenylmethyl-2-(phenyl)-1H-1,3-benzimidazole (Figures 1–3), is obtained from a series of reactions involving the chemical synthesis of 1-Ferrocenylmethyl-2-(phenyl)benzimidazole from 2-(phenyl)benzimidazole and (trimethylammonium)ferrocenylmethyl iodide (Pauson et al., 1966; Ferguson et al., 1994).

Bond lengths in the title compound 1-Ferrocenylmethyl-2-(phenyl)-1H-1,3-benzimidazole are normal and similar to our previously reported ferrocene derivatives (Gallagher, Hanlon & Howarth, 2001, 2007a,b; Gallagher, Hanlon, Howarth & Thomas, 2001).

The major conformation features are the orientation of the benzimidazole group to the ferrocenyl and phenyl rings. The five-membered imidazolyl ring forms dihedral angles of 84.71 (13)° and 52.12 (11)° with the substituted C5H4 and phenyl rings, respectively. These data ressemble the values 84.37 (9)°, 56.21 (8)° for a related 3-Cl substituted benzene ring system (Gallagher, Hanlon, Howarth & Thomas, 2001) and 88.61 (8)°, 42.15 (6)° for a 3,5-dimethyl substituted benzene ring system (Gallagher et al., 2007b). Two related methoxy substituted derivatives differ somewhat from these values with [78.07 (8)°, 40.22 (9)°] and [73.86 (8)°, 70.02 (7)°] for a 4-OMe and a 3,4-(OMe)2 pair (Gallagher, Hanlon & Howarth, 2001).

The angles at N2 differ, with C2—N2—(C1/C3) 128.7 (2)°, 124.2 (2)° (a 4.5° difference) and C1—N2—C3 is 106.1 (2)°. The C2—N2—C1/C3 difference is 4°, 5° in the 3-Cl, 3,5-Me2 derivatives, though extending to 7° in the 4-OMe and closing to 0° in the 3,4-(OMe)2 system (Gallagher, Hanlon & Howarth, 2001), thus displaying a significant variation in the angles at the N2 atom by remote atom site variation on the benzene ring {C31,···,C36}. No clear trend has been established and it is most probably due to the different crystal packing forces at the ferrocenyl–benzimidazole C2 bridge atom that effects subtle differences in the C2—N2—C1/C3 angles. For the C11—C2—N2 angles a small variation of ca 1° is observed for our five previously reported structures and for Fe1—C11—C2 the range is similarly small (127.4 (2)° for the title compound), 127.81 (13)° (3-Cl) and 128.43 (13)° for the 3,5-(Me)2 systems. A greater deviation in the bond angle data values is 126.56 (13)° [for 4-(OMe)] and 125.74 (15)° [for 3,4-(OMe)2], these latter two systems also display the greatest differences at N2 (see above). A wide range of angles is observed between the imidazolyl and C6 aromatic rings in these structures due to a lack of steric hindrance and differing crystal packing forces about the C1—C31 bond.

Of interest is the fact that there are no strong intermolecular interactions in the crystal structure of the title compound and the optimal acceptor N1 only has a closest H23 atom at a distance of 2.69 Å (Table 1). A weak cpC24—H24···π(CN) is also present with a C24···Cgi distance of 3.556 (3) Å, where Cg is the ring centroid of the C3N2 ring and the symmetry operation i = 3/2 - x, y + 1/2, z - 1/2: the closest C24···(C1,N1) distances are 3.564 (4), 3.572 (4) Å. The corresponding H24···(C1,N1) distances and C24—H24···(C1,N1) angles are 2.72, 2.84 Å and 136°, 152°, respectively. We have noted that in the absence of strong donors and acceptors that the primary interactions in the related derivatives arise from weaker interactions and contacts e.g. C—H···π(arene).

The obvious lack of formation (via C—H···N interactions) of a centrosymmetric R22(8) type hydrogen bonded ring involving molecules of the title compound (about inversion centres) can be explained by the presence of a myriad of weak C—H···π(arene) contacts (the shortest is a C—H···π(CN) interaction, Table 1) which overall are more energetically favoured in the crystal structure than a series of localized 'hydrogen bonded dimers'. Weak interactions involving the N1 atom is a related 3,5-dimethylbenzene derivative have also been commented upon by us (Gallagher, Hanlon, Howarth, 2007) though the C···N contact distance is long at 3.658 (2) Å.

Examination of the structure with PLATON (Spek, 2003) showed that there were no solvent accessible voids in the crystal lattice.

Related literature top

For related ferrocene literature, see: Li et al., (1998); Gallagher, Hanlon & Howarth, (2001); Gallagher, Hanlon, Howarth & Thomas, (2001); Howarth & Hanlon, (2001); Kazak et al., (2006); Gallagher et al. (2007a,b). For the chemical synthesis and crystal structure of [Fe(C5H5)2CH2N(CH3)3]+[I]-, see: Pauson et al., (1966); Ferguson et al. (1994).

Experimental top

Synthesis and chemical characteristion of the title compound N-Ferrocenylmethyl-2-(phenyl)benzimidazole [(C5H5)Fe(C5H4)CH2(C7H4N2)C6H5]

To a mixture of 2-phenylbenzimidazole (2.5 g, 13 mmol) and K2CO3 (2.7 g, 19.5 mmol) in CH3CN (150 ml) was added (trimethylammonium)ferrocenylmethyl iodide ([FcCH2N(CH3)3]+[I]-) (10.0 g, 13 mmol) (Pauson et al., 1966; Ferguson et al., 1994) and the mixture was heated to reflux temperatures for 12 h. The reaction was cooled to room temperature, water was added and the suspension extracted into CHCl3. The organic layer was washed with water, dried (MgSO4) and evaporated under vacuum to leave an orange gum. The crude product was purified by column chromatography on silica gel using CH2Cl2:CH3OH (97:3) as eluent.

Yield 6.9 g (67%), m.p. 405–409 K (uncorrected). Compound (I) was obtained as a light orange solid. IR (KBr, ν cm-1) (>1500 cm-1): 3016, 1724, 1658.

1H NMR [400 MHz, δH (p.p.m.), CDCl3], 7.83 (m, 2H, Benz-H), 7.73 (m, 1H, aryl-H), 7.65 (m, 4H, aryl-H), 7.25 (m, 2H, Benz-H), 5.20 (s, 2H, Fc—CH2), 4.17 (m, 2H, cpd-H), 4.07 (s, 5H, cpd-H), 4.04 (m, 2H, cpd-H). 13C NMR [δC, CDCl3], 153.21, 138.11, 135.50, 131.27, 130.62, 127.12, 122.41, 122.05, 119.13, 111.28, 82.95, 68.85, 68.79, 68.15, 43.61.

Refinement top

The molecule crystallizes in the orthorhombic system; space group Pc21n (No. 33) or Pcmn (No. 62) from the systematic absences. Space group Pna21 chosen from successful solution and refinement analysis (after transformation from the non-standard setting).

In the refinement, all H atoms were allowed for as riding atoms with C—H distances of 0.93 Å and 0.97 Å for the aromatic and methylene C—H (at 294 K).

The top five peaks in the final difference maps (+0.60 to +0.40 e.Å-3) are within 0.90 Å of the Fe atom.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of the main cpC—H···π-(CN) interaction in the crystal structure with atoms depicted as their van der Waals spheres.
[Figure 3] Fig. 3. A view of the C—H···N contact in the crystal structure with the N1 atom represented by a '*' and with H24 by a '#' located at symmetry position 1 - x,-y,-1/2 + z, (atoms depicted as for Fig. 2).
1-Ferrocenylmethyl-2-phenyl-1H-1,3-benzimidazole top
Crystal data top
[Fe(C5H5)(C19H15N2)]Dx = 1.409 Mg m3
Mr = 392.27Melting point: 407 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 47 reflections
a = 11.6323 (12) Åθ = 7.0–35.6°
b = 13.7738 (10) ŵ = 0.83 mm1
c = 11.5398 (7) ÅT = 294 K
V = 1848.9 (3) Å3Block, red
Z = 40.50 × 0.50 × 0.35 mm
F(000) = 816
Data collection top
Bruker P4
diffractometer
2435 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.029
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
ω scansh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.683, Tmax = 0.761l = 151
3270 measured reflections3 standard reflections every 197 reflections
2555 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2555 reflectionsΔρmax = 0.60 e Å3
244 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), with 207 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Fe(C5H5)(C19H15N2)]V = 1848.9 (3) Å3
Mr = 392.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.6323 (12) ŵ = 0.83 mm1
b = 13.7738 (10) ÅT = 294 K
c = 11.5398 (7) Å0.50 × 0.50 × 0.35 mm
Data collection top
Bruker P4
diffractometer
2435 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.683, Tmax = 0.7613 standard reflections every 197 reflections
3270 measured reflections intensity decay: 0.5%
2555 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.60 e Å3
S = 1.09Δρmin = 0.26 e Å3
2555 reflectionsAbsolute structure: Flack (1983), with 207 Friedel pairs
244 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.81242 (3)0.03598 (2)0.24237 (5)0.04083 (11)
N10.52595 (19)0.17950 (18)0.5475 (2)0.0498 (5)
N20.71032 (18)0.15801 (17)0.4965 (2)0.0440 (5)
C10.6004 (2)0.18169 (18)0.4623 (3)0.0440 (5)
C20.81119 (19)0.1389 (2)0.4244 (3)0.0455 (6)
C30.7034 (2)0.1362 (2)0.6134 (3)0.0464 (5)
C40.5876 (2)0.15079 (19)0.6437 (3)0.0467 (5)
C50.5527 (3)0.1356 (2)0.7572 (3)0.0566 (7)
C60.6312 (3)0.1046 (2)0.8361 (3)0.0638 (8)
C70.7468 (3)0.0896 (3)0.8057 (3)0.0680 (9)
C80.7846 (3)0.1045 (3)0.6928 (3)0.0606 (8)
C110.8254 (2)0.03259 (19)0.4000 (3)0.0437 (6)
C120.7383 (3)0.0407 (2)0.4034 (3)0.0512 (6)
C130.7909 (4)0.1313 (2)0.3750 (3)0.0649 (8)
C140.9097 (3)0.1143 (2)0.3543 (3)0.0635 (8)
C150.9307 (2)0.0137 (3)0.3697 (3)0.0567 (7)
C210.7798 (3)0.0671 (2)0.1200 (3)0.0588 (7)
C220.6901 (3)0.0032 (3)0.1212 (3)0.0591 (7)
C230.7390 (3)0.0943 (2)0.0966 (3)0.0557 (7)
C240.8585 (3)0.0820 (2)0.0807 (3)0.0542 (7)
C250.8831 (3)0.0172 (2)0.0952 (3)0.0564 (7)
C310.5694 (2)0.2044 (2)0.3413 (2)0.0484 (6)
C320.6256 (3)0.2752 (3)0.2775 (3)0.0641 (8)
C330.5939 (4)0.2929 (4)0.1637 (4)0.0829 (13)
C340.5049 (5)0.2420 (4)0.1146 (4)0.0933 (14)
C350.4467 (4)0.1738 (4)0.1776 (4)0.0842 (13)
C360.4770 (3)0.1544 (3)0.2923 (3)0.0632 (8)
H2A0.80360.17370.35180.055*
H2B0.87930.16290.46350.055*
H50.47680.14640.77900.068*
H60.60790.09300.91190.077*
H70.79890.06950.86190.082*
H80.86060.09360.67150.073*
H120.66110.03110.42110.061*
H130.75390.19100.37070.078*
H140.96410.16090.33420.076*
H151.00140.01690.36140.068*
H210.77190.13340.13310.071*
H220.61280.00900.13570.071*
H230.69930.15270.09150.067*
H240.91130.13070.06390.065*
H250.95550.04540.08930.068*
H320.68480.31080.31120.077*
H330.63300.33940.12050.100*
H340.48410.25400.03810.112*
H350.38620.14000.14360.101*
H360.43640.10880.33540.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03973 (17)0.03969 (17)0.04307 (18)0.00482 (11)0.00106 (18)0.00165 (16)
N10.0424 (10)0.0536 (11)0.0533 (11)0.0006 (9)0.0036 (9)0.0052 (10)
N20.0394 (9)0.0446 (11)0.0479 (11)0.0005 (8)0.0016 (9)0.0027 (9)
C10.0422 (11)0.0374 (11)0.0524 (12)0.0008 (10)0.0007 (11)0.0003 (10)
C20.0395 (12)0.0473 (13)0.0496 (13)0.0019 (10)0.0035 (10)0.0042 (11)
C30.0469 (13)0.0450 (12)0.0472 (13)0.0029 (10)0.0008 (11)0.0051 (11)
C40.0425 (12)0.0437 (12)0.0541 (14)0.0001 (10)0.0037 (11)0.0008 (11)
C50.0570 (14)0.0573 (14)0.0556 (18)0.0027 (12)0.0117 (13)0.0037 (13)
C60.079 (2)0.0670 (18)0.0453 (14)0.0004 (17)0.0054 (15)0.0046 (13)
C70.071 (2)0.082 (2)0.0516 (17)0.0148 (18)0.0088 (17)0.0010 (15)
C80.0550 (15)0.0713 (19)0.0554 (15)0.0145 (15)0.0069 (15)0.0059 (15)
C110.0456 (13)0.0452 (15)0.0405 (13)0.0041 (10)0.0001 (11)0.0026 (10)
C120.0565 (16)0.0510 (16)0.0459 (14)0.0001 (12)0.0054 (13)0.0011 (11)
C130.096 (2)0.0422 (14)0.0565 (17)0.0031 (15)0.0000 (17)0.0065 (13)
C140.0739 (19)0.0588 (16)0.0580 (16)0.0298 (15)0.0114 (15)0.0013 (14)
C150.0453 (13)0.0701 (18)0.0545 (15)0.0166 (13)0.0132 (12)0.0096 (14)
C210.083 (2)0.0484 (14)0.0450 (14)0.0119 (16)0.0039 (15)0.0021 (12)
C220.0532 (16)0.071 (2)0.0530 (16)0.0131 (14)0.0077 (13)0.0035 (16)
C230.0563 (16)0.0576 (16)0.0533 (14)0.0049 (14)0.0067 (13)0.0069 (13)
C240.0517 (14)0.0581 (16)0.0527 (15)0.0075 (14)0.0048 (12)0.0105 (13)
C250.0615 (18)0.0568 (15)0.0509 (15)0.0149 (15)0.0064 (15)0.0019 (13)
C310.0476 (13)0.0488 (12)0.0488 (13)0.0123 (11)0.0005 (11)0.0016 (10)
C320.0659 (18)0.0621 (17)0.0642 (18)0.0134 (15)0.0092 (14)0.0154 (15)
C330.084 (2)0.093 (3)0.072 (2)0.037 (2)0.015 (2)0.031 (2)
C340.109 (3)0.116 (3)0.0549 (17)0.058 (3)0.006 (2)0.010 (2)
C350.082 (3)0.094 (3)0.076 (2)0.034 (2)0.031 (2)0.022 (2)
C360.0640 (17)0.0597 (18)0.0658 (18)0.0129 (15)0.0125 (16)0.0054 (15)
Geometric parameters (Å, º) top
Fe1—C112.055 (3)C22—C231.407 (5)
Fe1—C122.050 (3)C23—C241.411 (4)
Fe1—C132.031 (3)C24—C251.407 (5)
Fe1—C142.028 (3)C31—C321.385 (4)
Fe1—C152.036 (3)C31—C361.396 (4)
Fe1—C212.038 (3)C32—C331.386 (6)
Fe1—C222.046 (3)C33—C341.373 (8)
Fe1—C232.050 (3)C34—C351.367 (7)
Fe1—C242.041 (3)C35—C361.397 (5)
Fe1—C252.024 (3)C2—H2A0.9700
N1—C11.310 (4)C2—H2B0.9700
N1—C41.379 (4)C5—H50.9300
N2—C11.378 (3)C6—H60.9300
N2—C21.462 (3)C7—H70.9300
N2—C31.384 (4)C8—H80.9300
C1—C311.476 (4)C12—H120.9300
C2—C111.501 (4)C13—H130.9300
C3—C41.406 (4)C14—H140.9300
C3—C81.386 (4)C15—H150.9300
C4—C51.388 (4)C21—H210.9300
C5—C61.358 (5)C22—H220.9300
C6—C71.406 (6)C23—H230.9300
C7—C81.390 (5)C24—H240.9300
C11—C121.431 (4)C25—H250.9300
C11—C151.424 (4)C32—H320.9300
C12—C131.428 (4)C33—H330.9300
C13—C141.422 (5)C34—H340.9300
C14—C151.418 (5)C35—H350.9300
C21—C221.423 (5)C36—H360.9300
C21—C251.414 (5)
C25—Fe1—C14120.02 (16)C13—C14—Fe169.63 (18)
C25—Fe1—C13156.34 (16)C14—C15—C11108.7 (3)
C14—Fe1—C1341.00 (15)C14—C15—Fe169.29 (17)
C25—Fe1—C15106.06 (15)C11—C15—Fe170.35 (17)
C14—Fe1—C1540.84 (14)C25—C21—C22107.1 (3)
C13—Fe1—C1568.71 (16)C25—C21—Fe169.11 (19)
C25—Fe1—C2140.72 (15)C22—C21—Fe169.88 (19)
C14—Fe1—C21156.31 (17)C23—C22—C21108.0 (3)
C13—Fe1—C21161.63 (15)C23—C22—Fe170.10 (18)
C15—Fe1—C21121.40 (15)C21—C22—Fe169.34 (18)
C25—Fe1—C2440.48 (14)C22—C23—C24108.5 (3)
C14—Fe1—C24105.66 (14)C22—C23—Fe169.72 (19)
C13—Fe1—C24121.30 (15)C24—C23—Fe169.49 (17)
C15—Fe1—C24121.92 (13)C25—C24—C23107.5 (3)
C21—Fe1—C2468.44 (14)C25—C24—Fe169.10 (17)
C25—Fe1—C2268.20 (15)C23—C24—Fe170.17 (17)
C14—Fe1—C22160.24 (16)C24—C25—C21108.9 (3)
C13—Fe1—C22124.90 (16)C24—C25—Fe170.42 (17)
C15—Fe1—C22158.44 (16)C21—C25—Fe170.17 (18)
C21—Fe1—C2240.78 (16)C32—C31—C36119.7 (3)
C24—Fe1—C2268.07 (14)C32—C31—C1122.4 (3)
C25—Fe1—C12160.58 (12)C36—C31—C1117.8 (3)
C14—Fe1—C1268.94 (14)C31—C32—C33120.1 (4)
C13—Fe1—C1240.96 (13)C34—C33—C32120.1 (4)
C15—Fe1—C1268.59 (13)C35—C34—C33120.3 (4)
C21—Fe1—C12124.88 (13)C34—C35—C36120.7 (5)
C24—Fe1—C12158.24 (13)C31—C36—C35118.9 (4)
C22—Fe1—C12109.52 (14)N2—C2—H2A109.3
C25—Fe1—C2367.80 (14)C11—C2—H2A109.3
C14—Fe1—C23123.13 (15)N2—C2—H2B109.3
C13—Fe1—C23108.29 (15)C11—C2—H2B109.3
C15—Fe1—C23158.81 (13)H2A—C2—H2B107.9
C21—Fe1—C2368.08 (14)C6—C5—H5120.5
C24—Fe1—C2340.35 (13)C4—C5—H5120.5
C22—Fe1—C2340.18 (15)C5—C6—H6119.3
C12—Fe1—C23123.80 (13)C7—C6—H6119.3
C25—Fe1—C11123.12 (12)C8—C7—H7119.5
C14—Fe1—C1168.90 (13)C6—C7—H7119.5
C13—Fe1—C1168.87 (13)C3—C8—H8121.6
C15—Fe1—C1140.76 (11)C7—C8—H8121.6
C21—Fe1—C11107.86 (13)C13—C12—H12126.1
C24—Fe1—C11158.77 (12)C11—C12—H12126.1
C22—Fe1—C11123.68 (14)Fe1—C12—H12126.9
C12—Fe1—C1140.81 (12)C14—C13—H13125.9
C23—Fe1—C11159.53 (12)C12—C13—H13125.9
C1—N1—C4105.5 (2)Fe1—C13—H13126.1
C1—N2—C2128.7 (2)C15—C14—H14126.1
C1—N2—C3106.1 (2)C13—C14—H14126.1
C2—N2—C3124.2 (2)Fe1—C14—H14126.0
N1—C1—N2113.1 (2)C14—C15—H15125.6
N1—C1—C31123.6 (2)C11—C15—H15125.6
N2—C1—C31123.2 (2)Fe1—C15—H15126.3
N2—C2—C11111.8 (2)C25—C21—H21126.4
N2—C3—C4105.5 (3)C22—C21—H21126.4
N2—C3—C8132.3 (3)Fe1—C21—H21126.1
C4—C3—C8122.2 (3)C23—C22—H22126.0
N1—C4—C3109.8 (3)C21—C22—H22126.0
N1—C4—C5130.6 (3)Fe1—C22—H22126.1
C3—C4—C5119.6 (3)C22—C23—H23125.7
C6—C5—C4118.9 (3)C24—C23—H23125.7
C5—C6—C7121.5 (3)Fe1—C23—H23126.6
C6—C7—C8121.0 (3)C25—C24—H24126.2
C3—C8—C7116.8 (3)C23—C24—H24126.2
C12—C11—C15107.4 (3)Fe1—C24—H24126.1
C15—C11—C2125.3 (3)C24—C25—H25125.6
C12—C11—C2127.3 (2)C21—C25—H25125.6
C15—C11—Fe168.90 (18)Fe1—C25—H25125.4
C12—C11—Fe169.41 (17)C31—C32—H32119.9
C2—C11—Fe1127.4 (2)C33—C32—H32119.9
C13—C12—C11107.8 (3)C34—C33—H33120.0
C13—C12—Fe168.8 (2)C32—C33—H33120.0
C11—C12—Fe169.77 (18)C35—C34—H34119.8
C14—C13—C12108.2 (3)C33—C34—H34119.8
C14—C13—Fe169.37 (19)C34—C35—H35119.6
C12—C13—Fe170.22 (18)C36—C35—H35119.6
C15—C14—C13107.9 (3)C31—C36—H36120.5
C15—C14—Fe169.87 (17)C35—C36—H36120.5
C4—N1—C1—N21.4 (3)C4—C5—C6—C71.3 (5)
C4—N1—C1—C31176.9 (3)C5—C6—C7—C81.2 (6)
C3—N2—C1—N11.8 (3)N2—C3—C8—C7180.0 (3)
C2—N2—C1—N1170.1 (3)C4—C3—C8—C71.5 (5)
C3—N2—C1—C31176.5 (2)C6—C7—C8—C31.2 (6)
C2—N2—C1—C318.2 (4)N2—C2—C11—C15156.6 (3)
C1—N2—C2—C1193.8 (3)N2—C2—C11—C1222.7 (4)
C3—N2—C2—C1172.6 (3)N2—C2—C11—Fe1114.2 (3)
C1—N2—C3—C8177.3 (3)N1—C1—C31—C32127.7 (3)
C2—N2—C3—C88.3 (5)N2—C1—C31—C3254.1 (4)
C1—N2—C3—C41.4 (3)N1—C1—C31—C3649.9 (4)
C2—N2—C3—C4170.4 (2)N2—C1—C31—C36128.2 (3)
C1—N1—C4—C5179.5 (3)C36—C31—C32—C333.1 (5)
C1—N1—C4—C30.4 (3)C1—C31—C32—C33179.3 (3)
N2—C3—C4—N10.6 (3)C31—C32—C33—C341.5 (6)
C8—C3—C4—N1178.2 (3)C32—C33—C34—C350.3 (6)
N2—C3—C4—C5179.4 (3)C33—C34—C35—C360.4 (6)
C8—C3—C4—C51.7 (4)C32—C31—C36—C352.9 (4)
N1—C4—C5—C6178.3 (3)C1—C31—C36—C35179.4 (3)
C3—C4—C5—C61.6 (4)C34—C35—C36—C311.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N1i0.932.693.346 (4)128
C24—H24···Cgii0.932.903.556 (3)129
Symmetry codes: (i) x+1, y, z1/2; (ii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C19H15N2)]
Mr392.27
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)294
a, b, c (Å)11.6323 (12), 13.7738 (10), 11.5398 (7)
V3)1848.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.50 × 0.50 × 0.35
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.683, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 2555, 2435
Rint0.029
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.09
No. of reflections2555
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.26
Absolute structureFlack (1983), with 207 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: XSCANS (Bruker, 1996), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N1i0.932.693.346 (4)128
C24—H24···Cgii0.932.903.556 (3)129
Symmetry codes: (i) x+1, y, z1/2; (ii) x+3/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds