Download citation
Download citation
link to html
In the title mononuclear complex, [Ag(C12H8N4O)2]NO3·H2O, the AgI ion is coordinated linearly by two pyridyl N atoms from two crystallographically independent monodentate 2,5-di-4-pyridyl-1,3,4-oxadiazole (4-bpo) ligands. In addition, the asymmetric unit contains one nitrate anion and one solvent water mol­ecule. In the crystal structure, nitrate anions connect to AgI ions via weak Ag...O inter­actions [Ag...O = 2.836 (3) Å] and to two symmetry-related solvent water mol­ecules via O—H...O hydrogen bonds, to afford a one-dimensional herring-bone-like motif along [100]. Significant π–π stacking inter­actions [Cg...Cg = 3.614 (2)–3.721 (2) Å, where Cg is the centroid of a pyridyl or oxadiazole ring] are also found between two adjacent one-dimensional motifs, resulting in a double-strand supra­molecular array.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057546/lh2554sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057546/lh2554Isup2.hkl
Contains datablock I

CCDC reference: 672678

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.09 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for Ag1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N9
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.087 Tmax scaled 0.923 Tmin scaled 0.849 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (9) 0.84
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The angular dipyridyl ligand, 2,5-di-4-pyridyl-1,3,4-oxadiazole (4-bpo), has been demonstrated to be an excellent building block to assemble with familiar transition metal ions, which produces a variety of coordination complexes from 0-D to 3-D (Du et al., 2005, 2006, 2007). With respect to AgI complexes, these are usually coordination polymers with infinite coordination arrays, in which the 4-bpo ligands display either µ-Npy, Npy or µ3-Npy, Npy, Noxadiazole bridging coordination modes (Dong et al., 2003; Du & Zhao, 2004). For instance, self-assembly of AgNO3 with 4-bpo through slow diffusion in CH3CN/CHCl3 yields a chain complex [Ag(4-bpo)(NO3)], in which the trigonal AgI centers are bridged by 4-bpo in µ-Npy, Npy fashion (Guo et al., 2003). Herein, we describe a related complex [Ag(4-bpo)2](NO3)(H2O) (I) prepared under hydrothermal condition, which has an unexpected mononuclear structure.

The molecular structure of the title compound (I) is shown in Fig. 1. The AgI ion is coordinated by two N atoms of the pyridyl rings from two separate monodentate 4-bpo ligands in trans-arrangement [Ag1—N1 = 2.171 (2) Å and Ag1—N5 = 2.173 (2) Å], displaying a linear geometry [N1—Ag1—N5 = 179.10 (8)°]. There is also a weak Ag1—O5 (2.836 (3) Å) contact between each AgI center and the adjacent nitrate anion. The two pyridyl rings in one 4-bpo ligand are inclined by 7.9 (4) and 12.7 (4)° with respect to the central oxadiazole plane, and by 10.6 (1)° with respect to each other. Corresponding values for the other 4-bpo molecule are 5.9 (2), 13.3 (1), and 10.7 (2)°. Interestingly, each nitrate acts as the acceptor of a pair of O—H···O bonds with the neighboring two water molecules, and thus, a supramolecular chain along the [100] direction is afforded. Two adjacent such 1-D chains are interdigitated and further combined to give a double-strand supramolecular array (see Fig. 2), via interchain parallel ππ stacking forces (center-to-center distances between the corresponding aromatic rings in 4-bpo are in the range of 3.61–3.72 Å). In addition, multiple C—H···O and C—H···N interactions (see Table) are observed to consolidate this crystalline lattice.

Related literature top

For related literature, see: Dong et al. (2003); Du & Zhao (2004); Du et al. (2005, 2006, 2007); Guo et al. (2003).

Experimental top

A water (8 ml) solution containing AgNO3 (17.3 mg, 0.1 mmol), 4-bpo (11.2 mg, 0.05 mmol), and oxamide (9.0 mg, 0.1 mmol) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated to 373 K for 24 h and subsequently cooled to room temperature at a rate of 1 K/h. Colorless block shape crystals were obtained in 75% yield (11.9 mg, based on 4-bpo). IR (cm-1): 3385b, 2362s, 1654s, 1563m, 1536m, 1484m, 1416m, 1384vs, 1106m, 988w, 832m, 741w, 713s, 637w.

Refinement top

C-bound hydrogen atoms were placed geometrically C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to the water O atom were visible in difference Fourier maps, but were fixed geometrically with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2 (Bruker, 2003) and SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. Molecular structure of with atom labeling of all non-H atoms, shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. One-dimensional double-strand supramolecular array of (I) extending along the [100] direction. H atoms of 4-bpo are omitted for clarity. Hydrogen bonds are shown with dashed lines.
s(2,5-di-4-pyridyl-1,3,4-oxadiazole)silver(I) nitrate monohydrate top
Crystal data top
[Ag(C12H8N4O)2]NO3·H2OF(000) = 1280
Mr = 636.34Dx = 1.741 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4561 reflections
a = 7.3200 (19) Åθ = 2.2–25.8°
b = 13.281 (3) ŵ = 0.89 mm1
c = 25.002 (6) ÅT = 294 K
β = 92.664 (3)°Block, colourless
V = 2428.0 (11) Å30.14 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4287 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 87
Tmin = 0.781, Tmax = 0.849k = 1515
13051 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0405P)2 + 1.1166P]
where P = (Fo2 + 2Fc2)/3
4287 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ag(C12H8N4O)2]NO3·H2OV = 2428.0 (11) Å3
Mr = 636.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3200 (19) ŵ = 0.89 mm1
b = 13.281 (3) ÅT = 294 K
c = 25.002 (6) Å0.14 × 0.13 × 0.09 mm
β = 92.664 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3232 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.849Rint = 0.021
13051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
4287 reflectionsΔρmin = 0.39 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.75772 (4)0.494095 (15)0.003989 (9)0.06022 (12)
O10.7828 (2)0.01648 (12)0.14056 (6)0.0331 (4)
O20.7228 (2)0.96348 (13)0.13712 (6)0.0353 (4)
O30.3960 (5)0.5442 (2)0.15393 (12)0.0977 (9)
O40.6848 (4)0.5320 (2)0.14858 (12)0.0962 (9)
O50.5187 (5)0.5726 (2)0.07974 (11)0.1103 (11)
N10.7338 (3)0.34138 (15)0.03382 (8)0.0400 (5)
N20.6208 (3)0.03195 (16)0.06841 (8)0.0390 (5)
N30.6508 (3)0.11581 (15)0.10182 (8)0.0394 (5)
N40.9379 (4)0.26272 (19)0.27527 (9)0.0542 (6)
N50.7790 (3)0.64634 (16)0.02698 (9)0.0422 (5)
N60.8743 (3)1.02181 (15)0.06527 (8)0.0385 (5)
N70.8432 (3)1.10181 (16)0.10126 (8)0.0403 (5)
N80.5575 (4)1.2125 (2)0.28380 (10)0.0635 (8)
N90.5326 (5)0.55187 (18)0.12635 (12)0.0624 (8)
C10.7127 (3)0.14629 (17)0.07331 (9)0.0294 (5)
C20.7864 (3)0.22346 (18)0.10502 (9)0.0351 (6)
H20.82970.21080.13990.042*
C30.7942 (4)0.31880 (19)0.08386 (10)0.0402 (6)
H30.84370.37010.10530.048*
C40.6629 (4)0.26646 (19)0.00361 (10)0.0391 (6)
H40.62160.28100.03130.047*
C50.6482 (4)0.16930 (18)0.02156 (9)0.0354 (6)
H50.59600.11970.00050.042*
C60.7006 (3)0.04297 (18)0.09256 (9)0.0315 (6)
C70.7458 (3)0.08427 (18)0.14297 (10)0.0331 (6)
C80.8143 (4)0.14296 (19)0.18910 (10)0.0359 (6)
C90.8063 (4)0.2469 (2)0.18619 (11)0.0457 (7)
H90.75970.27880.15540.055*
C100.8688 (4)0.3024 (2)0.22991 (12)0.0535 (8)
H100.86210.37220.22750.064*
C110.9429 (4)0.1626 (2)0.27713 (11)0.0508 (8)
H110.98940.13290.30860.061*
C120.8842 (4)0.0996 (2)0.23588 (10)0.0426 (7)
H120.89170.03000.23950.051*
C130.7920 (3)0.84052 (18)0.06722 (9)0.0319 (6)
C140.7207 (4)0.76235 (19)0.09872 (10)0.0378 (6)
H140.67580.77420.13360.045*
C150.7181 (4)0.66720 (19)0.07716 (11)0.0430 (7)
H150.67190.61480.09840.052*
C160.8458 (4)0.72245 (19)0.00307 (10)0.0399 (6)
H160.88710.70890.03810.048*
C170.8562 (4)0.81970 (18)0.01540 (9)0.0363 (6)
H170.90530.87050.00650.044*
C180.8010 (3)0.94280 (18)0.08788 (9)0.0324 (6)
C190.7541 (4)1.06397 (18)0.14211 (10)0.0348 (6)
C200.6850 (4)1.1144 (2)0.19096 (10)0.0379 (6)
C210.6799 (4)1.2186 (2)0.19361 (11)0.0467 (7)
H210.71871.25760.16430.056*
C220.6162 (5)1.2629 (3)0.24038 (13)0.0594 (8)
H220.61381.33280.24180.071*
C230.5636 (5)1.1129 (3)0.28027 (12)0.0640 (9)
H230.52371.07610.31020.077*
C240.6249 (4)1.0599 (2)0.23536 (11)0.0510 (7)
H240.62550.98990.23510.061*
O60.0299 (5)0.5615 (2)0.09432 (11)0.1088 (10)
H6A0.03400.54080.11970.163*
H6B0.13810.58100.10260.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0852 (2)0.03234 (14)0.06241 (18)0.00484 (12)0.00465 (14)0.01112 (10)
O10.0375 (10)0.0287 (9)0.0324 (9)0.0012 (7)0.0035 (7)0.0006 (7)
O20.0401 (11)0.0334 (9)0.0318 (9)0.0022 (8)0.0060 (8)0.0008 (7)
O30.118 (3)0.0802 (19)0.096 (2)0.0038 (18)0.0234 (19)0.0079 (16)
O40.106 (2)0.0663 (16)0.112 (2)0.0123 (16)0.0351 (19)0.0043 (15)
O50.159 (3)0.108 (2)0.0636 (18)0.023 (2)0.0036 (18)0.0261 (16)
N10.0477 (15)0.0320 (11)0.0396 (12)0.0005 (10)0.0035 (10)0.0025 (9)
N20.0454 (14)0.0339 (11)0.0370 (12)0.0049 (10)0.0072 (10)0.0031 (9)
N30.0457 (15)0.0327 (11)0.0392 (12)0.0059 (10)0.0039 (10)0.0039 (9)
N40.0566 (17)0.0581 (16)0.0474 (14)0.0071 (13)0.0035 (12)0.0134 (12)
N50.0515 (15)0.0339 (11)0.0409 (13)0.0007 (11)0.0010 (11)0.0034 (9)
N60.0443 (14)0.0330 (11)0.0372 (12)0.0028 (10)0.0074 (10)0.0013 (9)
N70.0482 (15)0.0330 (11)0.0389 (12)0.0030 (10)0.0073 (11)0.0021 (9)
N80.0556 (18)0.086 (2)0.0479 (16)0.0098 (15)0.0030 (13)0.0239 (14)
N90.088 (2)0.0349 (14)0.0635 (19)0.0041 (15)0.0099 (18)0.0045 (12)
C10.0263 (14)0.0315 (12)0.0305 (13)0.0004 (10)0.0014 (10)0.0017 (9)
C20.0388 (16)0.0366 (13)0.0294 (12)0.0001 (12)0.0038 (11)0.0026 (10)
C30.0475 (18)0.0313 (13)0.0413 (15)0.0042 (12)0.0023 (12)0.0060 (11)
C40.0459 (17)0.0374 (14)0.0335 (13)0.0001 (13)0.0045 (12)0.0025 (11)
C50.0389 (16)0.0347 (13)0.0320 (13)0.0014 (11)0.0035 (11)0.0040 (10)
C60.0307 (15)0.0353 (13)0.0282 (12)0.0004 (11)0.0001 (10)0.0012 (10)
C70.0340 (15)0.0300 (13)0.0354 (13)0.0021 (11)0.0032 (11)0.0004 (10)
C80.0343 (15)0.0387 (14)0.0347 (13)0.0006 (12)0.0013 (11)0.0054 (11)
C90.0520 (19)0.0383 (14)0.0459 (16)0.0030 (13)0.0073 (13)0.0036 (12)
C100.059 (2)0.0407 (15)0.0601 (19)0.0021 (15)0.0047 (16)0.0110 (14)
C110.055 (2)0.062 (2)0.0354 (15)0.0054 (16)0.0038 (13)0.0010 (13)
C120.0473 (18)0.0419 (15)0.0384 (15)0.0025 (13)0.0013 (13)0.0002 (11)
C130.0296 (15)0.0342 (13)0.0319 (13)0.0024 (11)0.0006 (11)0.0002 (10)
C140.0420 (17)0.0382 (14)0.0325 (13)0.0034 (12)0.0051 (12)0.0018 (10)
C150.0513 (18)0.0340 (14)0.0431 (15)0.0065 (13)0.0042 (13)0.0060 (11)
C160.0469 (18)0.0400 (14)0.0323 (13)0.0025 (13)0.0034 (12)0.0033 (11)
C170.0397 (16)0.0359 (13)0.0331 (13)0.0021 (12)0.0019 (11)0.0051 (10)
C180.0298 (15)0.0357 (14)0.0315 (13)0.0000 (11)0.0016 (11)0.0033 (10)
C190.0357 (16)0.0336 (13)0.0350 (14)0.0002 (11)0.0013 (12)0.0023 (10)
C200.0318 (15)0.0475 (15)0.0341 (14)0.0018 (12)0.0004 (11)0.0041 (11)
C210.0520 (19)0.0447 (16)0.0436 (15)0.0025 (14)0.0017 (13)0.0073 (12)
C220.057 (2)0.063 (2)0.058 (2)0.0065 (17)0.0033 (16)0.0220 (16)
C230.060 (2)0.093 (3)0.0373 (17)0.0018 (19)0.0141 (15)0.0005 (16)
C240.054 (2)0.0558 (18)0.0427 (16)0.0007 (15)0.0102 (14)0.0016 (13)
O60.129 (3)0.121 (3)0.0761 (19)0.025 (2)0.0020 (18)0.0038 (17)
Geometric parameters (Å, º) top
Ag1—N12.171 (2)C5—H50.9300
Ag1—N52.173 (2)C7—C81.461 (3)
O1—C61.364 (3)C8—C121.381 (4)
O1—C71.367 (3)C8—C91.384 (4)
O2—C191.361 (3)C9—C101.378 (4)
O2—C181.361 (3)C9—H90.9300
O3—N91.245 (4)C10—H100.9300
O4—N91.250 (4)C11—C121.381 (4)
O5—N91.197 (3)C11—H110.9300
N1—C41.339 (3)C12—H120.9300
N1—C31.341 (3)C13—C171.385 (3)
N2—C61.289 (3)C13—C141.390 (3)
N2—N31.403 (3)C13—C181.456 (3)
N3—C71.285 (3)C14—C151.374 (4)
N4—C101.329 (4)C14—H140.9300
N4—C111.331 (4)C15—H150.9300
N5—C161.338 (3)C16—C171.375 (3)
N5—C151.341 (3)C16—H160.9300
N6—C181.296 (3)C17—H170.9300
N6—N71.404 (3)C19—C201.462 (3)
N7—C191.288 (3)C20—C241.380 (4)
N8—C231.327 (4)C20—C211.386 (4)
N8—C221.329 (4)C21—C221.371 (4)
C1—C21.389 (3)C21—H210.9300
C1—C51.391 (3)C22—H220.9300
C1—C61.458 (3)C23—C241.383 (4)
C2—C31.375 (3)C23—H230.9300
C2—H20.9300C24—H240.9300
C3—H30.9300O6—H6A0.8505
C4—C51.372 (3)O6—H6B0.8501
C4—H40.9300
N1—Ag1—N5179.10 (8)N4—C10—H10117.8
C6—O1—C7102.18 (18)C9—C10—H10117.8
C19—O2—C18102.44 (18)N4—C11—C12124.9 (3)
C4—N1—C3117.5 (2)N4—C11—H11117.5
C4—N1—Ag1122.40 (17)C12—C11—H11117.5
C3—N1—Ag1120.05 (17)C8—C12—C11118.0 (3)
C6—N2—N3106.20 (19)C8—C12—H12121.0
C7—N3—N2106.4 (2)C11—C12—H12121.0
C10—N4—C11115.8 (2)C17—C13—C14118.9 (2)
C16—N5—C15117.8 (2)C17—C13—C18119.9 (2)
C16—N5—Ag1122.21 (17)C14—C13—C18121.2 (2)
C15—N5—Ag1119.95 (17)C15—C14—C13118.4 (2)
C18—N6—N7106.34 (19)C15—C14—H14120.8
C19—N7—N6105.9 (2)C13—C14—H14120.8
C23—N8—C22116.0 (3)N5—C15—C14123.2 (2)
O5—N9—O3121.6 (4)N5—C15—H15118.4
O5—N9—O4121.0 (4)C14—C15—H15118.4
O3—N9—O4117.3 (3)N5—C16—C17123.0 (2)
C2—C1—C5118.3 (2)N5—C16—H16118.5
C2—C1—C6122.3 (2)C17—C16—H16118.5
C5—C1—C6119.4 (2)C16—C17—C13118.7 (2)
C3—C2—C1118.8 (2)C16—C17—H17120.7
C3—C2—H2120.6C13—C17—H17120.7
C1—C2—H2120.6N6—C18—O2112.3 (2)
N1—C3—C2123.2 (2)N6—C18—C13128.7 (2)
N1—C3—H3118.4O2—C18—C13119.0 (2)
C2—C3—H3118.4N7—C19—O2113.0 (2)
N1—C4—C5123.3 (2)N7—C19—C20128.8 (2)
N1—C4—H4118.4O2—C19—C20118.2 (2)
C5—C4—H4118.4C24—C20—C21118.6 (3)
C4—C5—C1118.9 (2)C24—C20—C19121.1 (2)
C4—C5—H5120.6C21—C20—C19120.3 (2)
C1—C5—H5120.6C22—C21—C20118.4 (3)
N2—C6—O1112.6 (2)C22—C21—H21120.8
N2—C6—C1127.2 (2)C20—C21—H21120.8
O1—C6—C1120.1 (2)N8—C22—C21124.4 (3)
N3—C7—O1112.6 (2)N8—C22—H22117.8
N3—C7—C8127.7 (2)C21—C22—H22117.8
O1—C7—C8119.7 (2)N8—C23—C24124.8 (3)
C12—C8—C9118.3 (2)N8—C23—H23117.6
C12—C8—C7123.1 (2)C24—C23—H23117.6
C9—C8—C7118.6 (2)C20—C24—C23117.7 (3)
C10—C9—C8118.7 (3)C20—C24—H24121.1
C10—C9—H9120.7C23—C24—H24121.1
C8—C9—H9120.7H6A—O6—H6B117.1
N4—C10—C9124.4 (3)
C6—N2—N3—C70.1 (3)N4—C11—C12—C80.3 (5)
C18—N6—N7—C190.1 (3)C17—C13—C14—C150.5 (4)
C5—C1—C2—C30.6 (4)C18—C13—C14—C15179.2 (2)
C6—C1—C2—C3179.6 (2)C16—N5—C15—C140.2 (4)
C4—N1—C3—C20.0 (4)Ag1—N5—C15—C14177.4 (2)
Ag1—N1—C3—C2178.8 (2)C13—C14—C15—N50.8 (4)
C1—C2—C3—N10.0 (4)C15—N5—C16—C170.7 (4)
C3—N1—C4—C50.6 (4)Ag1—N5—C16—C17178.3 (2)
Ag1—N1—C4—C5179.4 (2)N5—C16—C17—C131.0 (4)
N1—C4—C5—C11.2 (4)C14—C13—C17—C160.4 (4)
C2—C1—C5—C41.2 (4)C18—C13—C17—C16179.9 (2)
C6—C1—C5—C4179.0 (2)N7—N6—C18—O20.4 (3)
N3—N2—C6—O10.3 (3)N7—N6—C18—C13178.9 (2)
N3—N2—C6—C1178.2 (2)C19—O2—C18—N60.7 (3)
C7—O1—C6—N20.6 (3)C19—O2—C18—C13178.7 (2)
C7—O1—C6—C1178.1 (2)C17—C13—C18—N65.0 (4)
C2—C1—C6—N2173.4 (3)C14—C13—C18—N6174.7 (3)
C5—C1—C6—N26.4 (4)C17—C13—C18—O2174.3 (2)
C2—C1—C6—O18.2 (4)C14—C13—C18—O26.1 (4)
C5—C1—C6—O1172.0 (2)N6—N7—C19—O20.5 (3)
N2—N3—C7—O10.5 (3)N6—N7—C19—C20179.2 (3)
N2—N3—C7—C8179.2 (2)C18—O2—C19—N70.7 (3)
C6—O1—C7—N30.6 (3)C18—O2—C19—C20179.0 (2)
C6—O1—C7—C8179.1 (2)N7—C19—C20—C24166.7 (3)
N3—C7—C8—C12167.0 (3)O2—C19—C20—C2413.6 (4)
O1—C7—C8—C1213.3 (4)N7—C19—C20—C2112.8 (4)
N3—C7—C8—C912.0 (4)O2—C19—C20—C21166.9 (2)
O1—C7—C8—C9167.7 (2)C24—C20—C21—C220.4 (4)
C12—C8—C9—C100.2 (4)C19—C20—C21—C22179.2 (3)
C7—C8—C9—C10179.2 (3)C23—N8—C22—C210.3 (5)
C11—N4—C10—C90.7 (5)C20—C21—C22—N80.3 (5)
C8—C9—C10—N40.3 (5)C22—N8—C23—C240.3 (5)
C10—N4—C11—C120.7 (5)C21—C20—C24—C230.4 (4)
C9—C8—C12—C110.2 (4)C19—C20—C24—C23179.2 (3)
C7—C8—C12—C11179.2 (3)N8—C23—C24—C200.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.852.222.949 (5)144
O6—H6B···O30.852.293.014 (5)144
C4—H4···O5ii0.932.493.228 (4)137
C5—H5···N2iii0.932.553.443 (3)161
C9—H9···O4iv0.932.583.197 (4)125
C15—H15···O3ii0.932.563.481 (4)169
C17—H17···N6v0.932.573.467 (3)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H8N4O)2]NO3·H2O
Mr636.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.3200 (19), 13.281 (3), 25.002 (6)
β (°) 92.664 (3)
V3)2428.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.14 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.781, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
13051, 4287, 3232
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.02
No. of reflections4287
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.39

Computer programs: , APEX2 (Bruker, 2003) and SAINT (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg, 2005), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Ag1—N12.171 (2)Ag1—N52.173 (2)
N1—Ag1—N5179.10 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.852.222.949 (5)144
O6—H6B···O30.852.293.014 (5)144
C4—H4···O5ii0.932.493.228 (4)137
C5—H5···N2iii0.932.553.443 (3)161
C9—H9···O4iv0.932.583.197 (4)125
C15—H15···O3ii0.932.563.481 (4)169
C17—H17···N6v0.932.573.467 (3)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds