Download citation
Download citation
link to html
The title compound, [Cu(NO3)2(C14H13NO)2], has been synthesized by the reaction of (E)-4-(4-methoxy­styr­yl)­pyridine with Cu(NO3)2 at room temperature in CH3OH. The mononuclear complex sits across a crystallographic centre of inversion. The CuII ion is six-coordinated in a distorted octa­hedral fashion by the trans-disposed pyridine N atoms of two pyridine ligands and asymmetrically by two O atoms from each of the two nitrate ligands, where one of the Cu-O distances is quite long at 2.452 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060473/ln2006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060473/ln2006Isup2.hkl
Contains datablock I

CCDC reference: 628808

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.044
  • wR factor = 0.118
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O2 .. 8.48 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O3 .. 8.53 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The heteroarylethene derivatives have attracted attention due to their optical properties and wide applications in nonlinear optical material (Saltiel et al., 1995, 1996, 2005, Lubczyk et al., 2002, Vansant et al., 1980, Taylor & Martin 1974). A series of heteroarylethene molecules coordinated through donor nitrogen atoms has been reported (Shi et al., 2004a,b, 2005, 2006). The investigation of the optical properties of heteroarylethene complexes in terms of structural correlation is still a challenging field. Herein we report the synthesis and crystal structure of a copper(II) complex with (E)-4-(4-methoxystyryl)pyridine (Mepy).

The neutral complex [Cu(Mepy)2(NO3)2], (I), crystallizes with the unique molecule lying across a crystallographic centre of inversion. Each CuII ion is 6-coordinated in a distorted octahedral fashion by the trans-disposed pyridine N-atoms of two pyridine ligands and by two O-atoms from each of the two nitrato ligands, as shown in Fig. 1. Selected geometric parameters are given in Table 1. One of the N—O distances from each nitrato ligand is quite long at 2.452 (3) Å. In the Mepy ligands, the dihedral angle between the planes of the pyridinyl and phenyl rings is 14.5 (2)°.

Related literature top

For nonlinear optical materials, see: Saltiel et al. (1995, 1996, 2005); Lubczyk et al. (2002); Taylor & Martin (1974); Vansant et al. (1980). For heteroarylethene molecules, see: Shi et al. (2004a,b, 2005, 2006). For the synthesis of the title compound, see: Zhang et al., 2000.

Experimental top

The (E)-4-(4-methoxystyryl)pyridine ligand (Mepy) was synthesized according to the literature methods (Zhang et al., 2000, Shi et al., 2004b). A solution of 4-Methoxybenzaldehyde (1.91 g, 14 mmol) in 2 ml DMF was added dropwise to a mixture of 4-methylpyridine (0.94 g, 10 mmol) and KOH (1.12 g, 20 mmol) in 15 ml DMF at 338 K over 2 h under nitrogen atmosphere. The mixture was then refluxed for another 2 h, cooled down and poured into 100 ml cold water. The resulting precipitate was filtered off and recrystallized from methanol/water (Vm:Vw=1:1) to give yellow crystals (yield 67%, m.p. 407 K).

The title compound was synthesized by the following method. Mepy ligand (0.42 g, 2.0 mmol) in CH3OH (30 ml) was added dropwise to a solution of Cu(NO3)2.4H2O (0.53 g, 1 mmol) in CH3OH (30 ml) with stirring for 1 h at room temperature. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation after 2 days. Yield 55%. Decomp. point: 525 K.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C(methyl)—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), and C(phenyl)—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 1997); software used to prepare material for publication: SHELXTL (Bruker 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I) with displacement ellipsoids at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. Symmetry code: (A) 1 - x, 2 - y, 1 - z.
trans-Bis[(E)-4-(4-methoxystyryl)pyridine]dinitratocopper(II) top
Crystal data top
[Cu(NO3)2(C14H13NO)2]F(000) = 630
Mr = 610.07Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0605 (19) ÅCell parameters from 1408 reflections
b = 12.714 (3) Åθ = 2.3–21.3°
c = 12.450 (3) ŵ = 0.84 mm1
β = 102.312 (4)°T = 293 K
V = 1401.3 (5) Å3Black, green
Z = 20.22 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube1401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.838, Tmax = 0.921k = 1510
6918 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(NO3)2(C14H13NO)2]V = 1401.3 (5) Å3
Mr = 610.07Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.0605 (19) ŵ = 0.84 mm1
b = 12.714 (3) ÅT = 293 K
c = 12.450 (3) Å0.22 × 0.14 × 0.10 mm
β = 102.312 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1401 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.921Rint = 0.061
6918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2469 reflectionsΔρmin = 0.38 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.50000.0403 (2)
O11.3800 (4)0.7888 (2)0.1442 (3)0.0647 (9)
O20.3170 (3)1.0079 (2)0.3732 (2)0.0483 (7)
O30.3939 (3)1.1665 (2)0.4188 (3)0.0592 (9)
O40.1994 (4)1.1421 (2)0.2859 (3)0.0694 (10)
N10.6334 (4)0.9889 (3)0.3935 (3)0.0413 (8)
N20.3010 (4)1.1078 (3)0.3579 (3)0.0462 (9)
C10.7574 (5)1.0471 (4)0.4018 (4)0.0586 (14)
H10.77631.09920.45540.070*
C20.8589 (5)1.0340 (3)0.3350 (4)0.0585 (14)
H20.94361.07710.34400.070*
C30.8358 (5)0.9567 (3)0.2539 (3)0.0402 (10)
C40.7036 (5)0.8984 (3)0.2442 (3)0.0453 (11)
H4A0.68050.84680.19030.054*
C50.6073 (5)0.9163 (3)0.3131 (4)0.0455 (11)
H50.51950.87640.30390.055*
C60.9475 (5)0.9402 (3)0.1863 (4)0.0471 (11)
H61.03070.98480.19980.057*
C70.9436 (5)0.8689 (3)0.1078 (4)0.0449 (11)
H70.85760.82710.09080.054*
C81.0605 (5)0.8493 (3)0.0455 (3)0.0427 (11)
C91.2057 (5)0.8901 (4)0.0755 (4)0.0566 (13)
H91.23050.93080.13890.068*
C101.3148 (5)0.8729 (4)0.0149 (4)0.0575 (13)
H101.41050.90210.03720.069*
C111.2804 (5)0.8117 (3)0.0788 (4)0.0457 (11)
C121.1379 (5)0.7688 (3)0.1100 (4)0.0576 (13)
H121.11410.72740.17280.069*
C131.0300 (5)0.7871 (3)0.0481 (4)0.0509 (12)
H130.93480.75700.07000.061*
C141.5184 (6)0.8457 (4)0.1266 (5)0.0746 (16)
H14A1.49750.91980.13130.112*
H14B1.57330.82640.18160.112*
H14C1.57770.82940.05500.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0381 (4)0.0492 (4)0.0373 (4)0.0021 (4)0.0162 (3)0.0008 (4)
O10.065 (2)0.076 (2)0.064 (2)0.0086 (18)0.0382 (19)0.0114 (17)
O20.0531 (18)0.0437 (17)0.0520 (18)0.0019 (17)0.0197 (14)0.0018 (16)
O30.059 (2)0.058 (2)0.057 (2)0.0076 (17)0.0034 (18)0.0056 (16)
O40.052 (2)0.073 (2)0.073 (3)0.0021 (17)0.0084 (19)0.0208 (19)
N10.0384 (19)0.048 (2)0.041 (2)0.0017 (18)0.0155 (15)0.0013 (19)
N20.038 (2)0.059 (3)0.044 (2)0.002 (2)0.0137 (19)0.002 (2)
C10.060 (3)0.065 (3)0.059 (3)0.019 (2)0.030 (3)0.024 (2)
C20.051 (3)0.063 (3)0.068 (4)0.023 (2)0.027 (3)0.018 (2)
C30.041 (3)0.044 (2)0.039 (3)0.0035 (19)0.016 (2)0.0062 (19)
C40.050 (3)0.042 (3)0.048 (3)0.002 (2)0.020 (2)0.006 (2)
C50.039 (3)0.049 (3)0.052 (3)0.006 (2)0.020 (2)0.000 (2)
C60.046 (3)0.053 (3)0.049 (3)0.003 (2)0.025 (2)0.001 (2)
C70.041 (3)0.054 (3)0.042 (3)0.001 (2)0.015 (2)0.003 (2)
C80.041 (3)0.050 (3)0.038 (3)0.009 (2)0.012 (2)0.001 (2)
C90.050 (3)0.081 (3)0.041 (3)0.001 (3)0.013 (2)0.029 (2)
C100.040 (3)0.078 (3)0.057 (3)0.004 (2)0.015 (2)0.016 (3)
C110.049 (3)0.050 (3)0.043 (3)0.014 (2)0.021 (2)0.000 (2)
C120.064 (3)0.066 (3)0.045 (3)0.003 (3)0.016 (3)0.018 (2)
C130.048 (3)0.062 (3)0.045 (3)0.004 (2)0.012 (2)0.006 (2)
C140.085 (4)0.068 (3)0.087 (4)0.011 (3)0.056 (3)0.012 (3)
Geometric parameters (Å, º) top
Cu1—N11.980 (3)C5—H50.9300
Cu1—O22.034 (3)C6—C71.328 (5)
Cu1—O32.452 (3)C6—H60.9300
O1—C111.369 (5)C7—C81.462 (5)
O1—C141.424 (5)C7—H70.9300
O2—N21.288 (4)C8—C131.386 (6)
O3—N21.252 (4)C8—C91.389 (6)
O4—N21.221 (4)C9—C101.382 (6)
N1—C11.330 (5)C9—H90.9300
N1—C51.345 (5)C10—C111.381 (6)
C1—C21.376 (6)C10—H100.9300
C1—H10.9300C11—C121.379 (6)
C2—C31.392 (6)C12—C131.387 (6)
C2—H20.9300C12—H120.9300
C3—C41.392 (5)C13—H130.9300
C3—C61.463 (5)C14—H14A0.9600
C4—C51.367 (5)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
N1i—Cu1—N1180C7—C6—H6116.3
N1—Cu1—O289.81 (12)C3—C6—H6116.3
N1—Cu1—O391.55 (11)C6—C7—C8126.8 (4)
O2i—Cu1—O2180C6—C7—H7116.6
O2—Cu1—O356.93 (11)C8—C7—H7116.6
C11—O1—C14118.1 (4)C13—C8—C9116.5 (4)
N2—O2—Cu1102.1 (2)C13—C8—C7120.4 (4)
C1—N1—C5116.7 (3)C9—C8—C7123.0 (4)
C1—N1—Cu1122.3 (3)C10—C9—C8122.7 (4)
C5—N1—Cu1120.8 (3)C10—C9—H9118.7
O4—N2—O3122.4 (4)C8—C9—H9118.7
O4—N2—O2120.3 (4)C11—C10—C9119.5 (4)
O3—N2—O2117.3 (4)C11—C10—H10120.3
N1—C1—C2123.3 (4)C9—C10—H10120.3
N1—C1—H1118.3O1—C11—C12116.4 (4)
C2—C1—H1118.3O1—C11—C10124.3 (4)
C1—C2—C3120.4 (4)C12—C11—C10119.3 (4)
C1—C2—H2119.8C11—C12—C13120.4 (4)
C3—C2—H2119.8C11—C12—H12119.8
C4—C3—C2115.7 (4)C13—C12—H12119.8
C4—C3—C6124.2 (4)C8—C13—C12121.6 (4)
C2—C3—C6120.2 (4)C8—C13—H13119.2
C5—C4—C3120.6 (4)C12—C13—H13119.2
C5—C4—H4A119.7O1—C14—H14A109.5
C3—C4—H4A119.7O1—C14—H14B109.5
N1—C5—C4123.2 (4)H14A—C14—H14B109.5
N1—C5—H5118.4O1—C14—H14C109.5
C4—C5—H5118.4H14A—C14—H14C109.5
C7—C6—C3127.5 (4)H14B—C14—H14C109.5
N1—Cu1—O2—N292.2 (2)C4—C3—C6—C70.8 (7)
O2i—Cu1—N1—C147.6 (4)C2—C3—C6—C7178.5 (4)
O2—Cu1—N1—C1132.4 (4)C3—C6—C7—C8176.1 (4)
O2i—Cu1—N1—C5127.9 (3)C6—C7—C8—C13167.3 (4)
O2—Cu1—N1—C552.1 (3)C6—C7—C8—C913.0 (7)
Cu1—O2—N2—O4179.9 (3)C13—C8—C9—C101.5 (7)
Cu1—O2—N2—O30.4 (4)C7—C8—C9—C10178.8 (4)
C5—N1—C1—C21.8 (7)C8—C9—C10—C110.7 (7)
Cu1—N1—C1—C2173.8 (4)C14—O1—C11—C12169.2 (4)
N1—C1—C2—C30.3 (8)C14—O1—C11—C1011.6 (6)
C1—C2—C3—C42.0 (7)C9—C10—C11—O1179.4 (4)
C1—C2—C3—C6177.4 (4)C9—C10—C11—C120.2 (7)
C2—C3—C4—C51.6 (6)O1—C11—C12—C13179.5 (4)
C6—C3—C4—C5177.7 (4)C10—C11—C12—C130.3 (7)
C1—N1—C5—C42.3 (6)C9—C8—C13—C121.5 (7)
Cu1—N1—C5—C4173.5 (3)C7—C8—C13—C12178.8 (4)
C3—C4—C5—N10.5 (7)C11—C12—C13—C80.6 (7)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C14H13NO)2]
Mr610.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0605 (19), 12.714 (3), 12.450 (3)
β (°) 102.312 (4)
V3)1401.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.22 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
6918, 2469, 1401
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections2469
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker 1997).

Selected geometric parameters (Å, º) top
Cu1—N11.980 (3)Cu1—O32.452 (3)
Cu1—O22.034 (3)
N1—Cu1—O289.81 (12)O2—Cu1—O356.93 (11)
N1—Cu1—O391.55 (11)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds