Download citation
Download citation
link to html
The crystal structure of the title compound, [Ba2(CF3O3S)2(C12H24O6)2(H2O)2](CF3O3S)2, comprises a ten-coordinated Ba2+ cation that is coordinated by 18-crown-6, trifluoro­methane­sulfonate counter-ions and a water mol­ecule, and an uncoordinated counter-ion. The dinuclear cation lies on a center of inversion. Each coordinated triflate group chelates a Ba atom while being monodentate to the adjacent Ba atom. The uncoordinated counter-ion is hydrogen bonded to the cation. Hydrogen bonds form infinite tubular arrays.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060564/ng2370sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060564/ng2370Isup2.hkl
Contains datablock I

CCDC reference: 674062

Key indicators

  • Single-crystal X-ray study
  • T = 175 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.023
  • wR factor = 0.022
  • Data-to-parameter ratio = 19.6

checkCIF/PLATON results

No syntax errors found



Alert level C CHEMW01_ALERT_1_C The ratio of given/expected molecular weight as calculated from the _chemical_formula_sum lies outside the range 0.99 <> 1.01 Calculated formula weight = 717.8020 Formula weight given = 732.6700 CHEMW01_ALERT_1_C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_weight 732.67 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 14.00 168.15 H 1.01 26.00 26.21 O 16.00 13.00 207.99 F 19.00 6.00 113.99 S 32.07 2.00 64.13 Ba 137.33 1.00 137.33 Calculated formula weight 717.80 DENSD01_ALERT_1_C The ratio of the submitted crystal density and that calculated from the formula is outside the range 0.99 <> 1.01 Crystal density given = 1.835 Calculated crystal density = 1.873 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT043_ALERT_1_C Check Reported Molecular Weight ................ 732.67 PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT046_ALERT_1_C Reported Z, MW and D(calc) are Inconsistent .... 1.87 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.82 PLAT231_ALERT_4_C Hirshfeld Test (Solvent) S10 - C14 .. 6.23 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S10 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C14
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.821 Tmax scaled 0.821 Tmin scaled 0.739
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Macrocycle-cation-π-interactions are of particular biological interest (Dougherty, 1996). In an attempt to co-crystallize an aromatic derivative with a macrocyclic (18-crown-6).(BaTf2) complex (Arnal-Hérault et al., 2005), the latter complex crystallized without the organic compound. Crown-ethers are well known complexants to metal cations, with selective recognition properties relative to the size of the ring. The structure of Ba(C12O8H24).(H2O),(CF3SO3)2 is forming tubular arrays (Barboiu et al., 2003) made of crown ether rings. The oxygen atoms of the crown ether are coordinating the cation in equatorial position while the trifluoromethanesulfonate (CF3SO3 or Tf) anions are coordinating the Ba2+ in apical position. The second apical position is coordinated by a bridging water molecule which is simultaneously H-bonded to both trifluoromethanesulfonate anions (O(Tf)–O(H2O) 2.805 Å) and coordinated to the Ba2+ cation (Ba–O(H2O) = 2.689 (2) Å). Fig. 1 shows the full coordination pattern of barium ions. Trifluoromethanesulfonate anions are either coordinated to two barium cations, or to two water molecules, them-self coordinated to Ba2+ cations. Each barium cation has the same environment i.e. it is coordinating to ten oxygen atoms of which six from the 18 C6, three from two trifluoromethanesulfonate on one face of the 18 C6 and one from the water molecule on the other face of the 18 C6. The decahedral geometry of barium can be characterized as a sliced distorted tetrahedral environment as depicted in Fig. 2. Molecular columns of barium are formed with an average Ba–Ba distance of 8.5 Å between the anions inside one row (See Fig. 3). Each 18 C6 tube is closely packed to two others through hydrophobic contacts, forming planar sheets. About 7.5 Å separate two rows of barium of one sheet, while the distance between the rows of barium in two distinct sheets is about 9.9 Å. Trifluoromethanesulfonate fluoride atoms close contacts are observed between two sheets (Fig. 4) with F–F = 2.932 (2) Å. The overall packing of the title compound is unusual in the way the trifluoromethanesulfonate anions are inserted between the parallel crown ethers and form supramolecular polymers containing metal cations, counter anions and water molecules. In all crystal structures including trifluoromethanesulfonate and 18 C6, the ion is pushed away in the hydrophobic gaps between the crown ether tubular arrays and does not form an ionic bridge between two metal cations (Wei et al., 1988).

Related literature top

For a similar Ba–18-crown-6 compound, see: Wei et al. (1988). For examples of macrocycle–cation π interactions, see: Arnal-Hérault et al. (2005). For biological and related applications, see: Dougherty (1996); Meyer et al. (2003); Ma & Dougherty (1997). For examples of tubular superstructures, see: Barboiu et al. (2003); Blondeau et al. (2005); Fromm & Bergougnant (2007).

Experimental top

The title compound was prepared by dissolving in acetone (10 ml), in equimolar proportions, 1-(1H-indol-5-yl)-3-phenylurea (0.100 g), 18 C6 (0.105 g) and barium trifluoromethanesulfonate (0.173 g). The metallo-organic compound was crystallized by layering this solution with isopropyl ether. The crystals were formed over two days, by slow diffusion of the non-solvent in the solvent phase. The initial goal of the work was to grow co-crystals of inclusion complexes of Ba-18 C6 bound to the ureido-derivative ligand through cation-π interaction. Indeed, Arnal-Hérault et al. (2005) previously showed that the cation was favourably coordinated by the crown ether while the counter-ion was complexing with the ureido moiety of the co-crystallized ligand.

Refinement top

The H atoms, including those of the water molecule, were all located in a difference map, and repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.87 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996), Mercury (Macrae et al., 2006) and DrawXtl (Finger et al., 2007); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Representation of (1) with the numbering scheme adopted. The Ba atom is in dark-grey, the F atom in light-green, the S atom in yellow, the C atom in green, the O atoms in red and the H atom in grey. Displacement ellipsoids are drawn at the 50% level. Non-labelled atoms are related by inversion symmetry (-1 halfway the two sulfur and barium atoms) to labeled atoms.
[Figure 2] Fig. 2. Sliced distorted tetrahedron environment for the barium cation. The red balls represent oxygen atoms. The oxygen atoms forming the base of the tetrahedron belong to the trifluoromethanesulfonate ions and the oxygen atom at the summit is part of the water molecule.
[Figure 3] Fig. 3. Representation of the repeating pattern with sandwiched trifluoromethanesulfonate anions between crown ethers-barium motifs.
[Figure 4] Fig. 4. The three-dimensional packing showing discrete sheets of crown ether tubes.
Bis(µ-trifluoromethanesulfonato-κ2O:O')bis[aqua˘1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)barium(II)] bis(trifluoromethanesulfonate) top
Crystal data top
[Ba2(CF3O3S)2(C12H24O6)2(H2O)2](CF3O3S)2Z = 1
Mr = 1465.34F(000) = 712
Triclinic, P1Dx = 1.835 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.942 (1) ÅCell parameters from 23806 reflections
b = 12.3257 (16) Åθ = 4–33°
c = 12.7431 (14) ŵ = 1.79 mm1
α = 68.629 (12)°T = 175 K
β = 87.576 (10)°Needle, colourless
γ = 83.212 (10)°0.35 × 0.16 × 0.11 mm
V = 1298.8 (3) Å3
Data collection top
Oxford Diffraction GEMINI
diffractometer
9409 independent reflections
Radiation source: Enhance (Mo) X-ray Source6364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0143 pixels mm-1θmax = 33.5°, θmin = 3.8°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1819
Tmin = 0.90, Tmax = 1.00l = 1916
23806 measured reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.022 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 19.2 -26.3 13.3 -3.95
S = 1.11(Δ/σ)max = 0.001
6364 reflectionsΔρmax = 0.45 e Å3
325 parametersΔρmin = 0.48 e Å3
0 restraints
Crystal data top
[Ba2(CF3O3S)2(C12H24O6)2(H2O)2](CF3O3S)2γ = 83.212 (10)°
Mr = 1465.34V = 1298.8 (3) Å3
Triclinic, P1Z = 1
a = 8.942 (1) ÅMo Kα radiation
b = 12.3257 (16) ŵ = 1.79 mm1
c = 12.7431 (14) ÅT = 175 K
α = 68.629 (12)°0.35 × 0.16 × 0.11 mm
β = 87.576 (10)°
Data collection top
Oxford Diffraction GEMINI
diffractometer
9409 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
6364 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.022
23806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.022H-atom parameters constrained
S = 1.11Δρmax = 0.45 e Å3
6364 reflectionsΔρmin = 0.48 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.823886 (15)0.307417 (11)0.715055 (11)0.0197
S20.98425 (6)0.57362 (4)0.60939 (4)0.0214
O30.82673 (17)0.56535 (14)0.59766 (13)0.0280
O41.06495 (18)0.46352 (14)0.67793 (14)0.0304
O51.0606 (2)0.63842 (15)0.50802 (14)0.0329
C60.9852 (3)0.6661 (2)0.6942 (2)0.0316
F70.92051 (19)0.61984 (15)0.79318 (13)0.0447
F80.9110 (2)0.77100 (14)0.64130 (16)0.0568
F91.1246 (2)0.68206 (19)0.71126 (17)0.0593
S100.55301 (6)0.83623 (5)0.86965 (5)0.0256
O110.4194 (2)0.8629 (2)0.92588 (16)0.0484
O120.6165 (2)0.71647 (15)0.91215 (17)0.0410
O130.6602 (2)0.92020 (17)0.84453 (19)0.0479
C140.4807 (3)0.8563 (2)0.7315 (2)0.0361
F150.4128 (2)0.96364 (15)0.67946 (14)0.0525
F160.3796 (2)0.78288 (17)0.73984 (17)0.0622
F170.5887 (2)0.8363 (2)0.66466 (17)0.0740
O180.55879 (17)0.42809 (13)0.76730 (13)0.0266
C190.5834 (3)0.5078 (2)0.8213 (2)0.0308
C200.6720 (3)0.4413 (2)0.9258 (2)0.0348
O210.81117 (19)0.38901 (14)0.89606 (13)0.0302
C220.9059 (4)0.3309 (3)0.9923 (2)0.0452
C231.0526 (3)0.2859 (3)0.9547 (3)0.0488
O241.0229 (2)0.20633 (16)0.90171 (15)0.0382
C251.1552 (3)0.1405 (3)0.8804 (3)0.0544
C261.1083 (4)0.0470 (3)0.8449 (3)0.0536
O271.0265 (2)0.10039 (15)0.74158 (15)0.0378
C280.9786 (3)0.0131 (2)0.7045 (3)0.0456
C290.8885 (3)0.0720 (2)0.5994 (2)0.0430
O300.7606 (2)0.13963 (14)0.62381 (14)0.0313
C310.6505 (3)0.1803 (2)0.5361 (2)0.0362
C320.5118 (3)0.2330 (2)0.5771 (2)0.0359
O330.54743 (17)0.33276 (14)0.59967 (13)0.0269
C340.4159 (3)0.3861 (3)0.6381 (2)0.0388
C350.4590 (3)0.4808 (2)0.6740 (2)0.0340
H360.37030.52070.69640.0416*
H370.50780.53750.61220.0413*
H380.37400.32460.70090.0500*
H390.34380.41690.57800.0503*
H400.47650.17650.64580.0466*
H410.43220.25670.52070.0471*
H420.69030.23650.46850.0455*
H430.62570.11390.51850.0464*
H440.94870.12090.53980.0525*
H450.85500.01170.57670.0528*
H461.06670.03520.69160.0524*
H470.91670.03590.76280.0518*
H481.19640.00170.83440.0574*
H491.04340.00140.90240.0574*
H501.21420.10460.94960.0613*
H511.21450.19210.82230.0613*
H521.11660.24391.01960.0582*
H531.10210.34980.90180.0580*
H540.92360.38611.02760.0541*
H550.85690.26621.04590.0543*
H560.69490.49380.96340.0436*
H570.61470.38090.97730.0441*
H580.63690.57100.77020.0387*
H590.48790.54060.84200.0391*
O600.6654 (3)0.14219 (16)0.85835 (16)0.0479
H610.66820.07120.86160.0500*
H620.62640.14520.92030.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02160 (5)0.01736 (5)0.01886 (5)0.00117 (3)0.00021 (4)0.00535 (3)
S20.0234 (2)0.0229 (2)0.0205 (2)0.00578 (18)0.00364 (17)0.01018 (18)
O30.0247 (7)0.0310 (8)0.0309 (8)0.0048 (6)0.0008 (6)0.0137 (6)
O40.0271 (8)0.0287 (8)0.0329 (8)0.0013 (6)0.0007 (6)0.0086 (7)
O50.0442 (10)0.0322 (8)0.0262 (8)0.0151 (7)0.0139 (7)0.0133 (7)
C60.0353 (12)0.0341 (11)0.0342 (12)0.0162 (9)0.0110 (9)0.0203 (10)
F70.0561 (10)0.0593 (10)0.0333 (8)0.0285 (8)0.0189 (7)0.0292 (7)
F80.0837 (14)0.0319 (8)0.0588 (11)0.0036 (8)0.0180 (10)0.0240 (8)
F90.0455 (10)0.0929 (15)0.0712 (12)0.0395 (10)0.0172 (9)0.0593 (12)
S100.0262 (2)0.0247 (2)0.0286 (3)0.00262 (19)0.0003 (2)0.0126 (2)
O110.0415 (11)0.0666 (14)0.0318 (9)0.0138 (10)0.0028 (8)0.0178 (9)
O120.0410 (10)0.0279 (8)0.0532 (12)0.0017 (7)0.0108 (9)0.0143 (8)
O130.0494 (12)0.0365 (10)0.0630 (13)0.0178 (9)0.0062 (10)0.0195 (9)
C140.0395 (13)0.0369 (12)0.0349 (12)0.0054 (10)0.0018 (10)0.0164 (10)
F150.0683 (12)0.0403 (9)0.0386 (9)0.0014 (8)0.0133 (8)0.0030 (7)
F160.0720 (13)0.0532 (11)0.0662 (12)0.0212 (10)0.0296 (10)0.0198 (9)
F170.0673 (13)0.1174 (19)0.0463 (11)0.0111 (13)0.0071 (9)0.0475 (12)
O180.0282 (8)0.0236 (7)0.0288 (8)0.0001 (6)0.0001 (6)0.0115 (6)
C190.0336 (12)0.0257 (10)0.0358 (12)0.0024 (9)0.0083 (9)0.0156 (9)
C200.0477 (14)0.0323 (11)0.0307 (11)0.0103 (10)0.0082 (10)0.0181 (10)
O210.0402 (9)0.0306 (8)0.0201 (7)0.0028 (7)0.0035 (6)0.0094 (6)
C220.0611 (18)0.0471 (15)0.0265 (12)0.0050 (13)0.0162 (12)0.0108 (11)
C230.0487 (16)0.0527 (17)0.0401 (15)0.0070 (13)0.0205 (13)0.0083 (13)
O240.0304 (9)0.0394 (9)0.0376 (9)0.0031 (7)0.0103 (7)0.0063 (8)
C250.0251 (12)0.079 (2)0.0434 (16)0.0120 (13)0.0069 (11)0.0086 (15)
C260.0485 (17)0.0469 (16)0.0449 (16)0.0266 (13)0.0000 (13)0.0022 (13)
O270.0385 (9)0.0288 (8)0.0356 (9)0.0087 (7)0.0044 (7)0.0034 (7)
C280.0454 (15)0.0235 (11)0.0596 (18)0.0040 (10)0.0164 (13)0.0094 (11)
C290.0556 (17)0.0301 (12)0.0480 (15)0.0016 (11)0.0137 (13)0.0222 (11)
O300.0411 (9)0.0247 (7)0.0294 (8)0.0011 (7)0.0044 (7)0.0127 (6)
C310.0523 (15)0.0336 (12)0.0288 (11)0.0124 (11)0.0006 (10)0.0160 (10)
C320.0392 (13)0.0377 (12)0.0345 (12)0.0141 (10)0.0030 (10)0.0142 (10)
O330.0242 (7)0.0295 (8)0.0288 (8)0.0040 (6)0.0024 (6)0.0120 (6)
C340.0229 (11)0.0525 (16)0.0444 (14)0.0021 (10)0.0009 (10)0.0220 (12)
C350.0269 (11)0.0345 (12)0.0387 (13)0.0077 (9)0.0038 (9)0.0140 (10)
O600.0825 (15)0.0312 (9)0.0358 (10)0.0251 (10)0.0259 (10)0.0161 (8)
Geometric parameters (Å, º) top
Ba1—O32.9825 (17)C22—C231.492 (4)
Ba1—O42.9669 (17)C22—H540.972
Ba1—O5i2.8504 (16)C22—H550.977
Ba1—O182.8336 (15)C23—O241.431 (4)
Ba1—O212.8259 (16)C23—H520.968
Ba1—O242.8375 (17)C23—H530.970
Ba1—O272.8701 (17)O24—C251.427 (3)
Ba1—O302.8344 (16)C25—C261.490 (5)
Ba1—O332.8567 (15)C25—H500.975
Ba1—O602.6916 (18)C25—H510.969
O60—Ba12.6916 (18)C26—O271.427 (3)
O60—O11ii2.801 (3)C26—H480.967
O60—O13iii2.811 (3)C26—H490.978
S2—O31.4420 (16)O27—C281.436 (3)
S2—O41.4433 (17)C28—C291.488 (4)
S2—O51.4406 (16)C28—H460.975
S2—C61.835 (2)C28—H470.969
C6—F71.321 (3)C29—O301.425 (3)
C6—F81.329 (3)C29—H440.968
C6—F91.323 (3)C29—H450.971
S10—O111.4335 (19)O30—C311.427 (3)
S10—O121.4282 (18)C31—C321.494 (4)
S10—O131.4348 (19)C31—H420.973
S10—C141.822 (3)C31—H430.976
C14—F151.328 (3)C32—O331.433 (3)
C14—F161.328 (3)C32—H400.967
C14—F171.322 (3)C32—H410.975
O18—C191.430 (3)O33—C341.435 (3)
O18—C351.422 (3)C34—C351.494 (4)
C19—C201.488 (4)C34—H380.978
C19—H580.975C34—H390.958
C19—H590.969C35—H360.971
C20—O211.434 (3)C35—H370.970
C20—H560.977O60—H610.858
C20—H570.977O60—H620.861
O21—C221.428 (3)
O3—Ba1—O447.65 (4)O18—C19—H59110.0
O3—Ba1—O5i68.86 (5)C20—C19—H59108.5
O4—Ba1—O5i70.15 (5)H58—C19—H59109.4
O3—Ba1—O1869.95 (5)C19—C20—O21108.74 (19)
O4—Ba1—O18106.62 (5)C19—C20—H56110.5
O5i—Ba1—O18123.16 (5)O21—C20—H56108.5
O3—Ba1—O2177.40 (5)C19—C20—H57109.9
O4—Ba1—O2172.76 (5)O21—C20—H57110.3
O5i—Ba1—O21140.95 (5)H56—C20—H57108.9
O18—Ba1—O2157.87 (5)C20—O21—C22111.26 (19)
O3—Ba1—O24114.31 (5)O21—C22—C23108.7 (2)
O4—Ba1—O2472.98 (5)O21—C22—H54109.5
O5i—Ba1—O24119.71 (6)C23—C22—H54109.2
O18—Ba1—O24112.12 (5)O21—C22—H55109.4
O21—Ba1—O2458.03 (5)C23—C22—H55110.3
O3—Ba1—O27136.71 (5)H54—C22—H55109.7
O4—Ba1—O2794.93 (5)C22—C23—O24108.0 (2)
O5i—Ba1—O2779.00 (5)C22—C23—H52109.5
O18—Ba1—O27153.05 (5)O24—C23—H52108.7
O21—Ba1—O27116.26 (5)C22—C23—H53110.8
O3—Ba1—O30128.43 (5)O24—C23—H53109.7
O4—Ba1—O30134.15 (5)H52—C23—H53110.1
O5i—Ba1—O3068.81 (5)C23—O24—C25113.7 (2)
O18—Ba1—O30112.40 (5)O24—C25—C26108.4 (2)
O21—Ba1—O30150.20 (5)O24—C25—H50109.0
O3—Ba1—O3386.75 (5)C26—C25—H50109.4
O4—Ba1—O33132.11 (5)O24—C25—H51109.6
O5i—Ba1—O3381.31 (5)C26—C25—H51111.0
O18—Ba1—O3358.91 (5)H50—C25—H51109.5
O21—Ba1—O33116.52 (5)C25—C26—O27109.0 (2)
O3—Ba1—O60143.63 (5)C25—C26—H48109.7
O4—Ba1—O60149.11 (6)O27—C26—H48109.7
O5i—Ba1—O60136.56 (5)C25—C26—H49109.8
O18—Ba1—O6073.70 (6)O27—C26—H49109.1
O21—Ba1—O6082.49 (5)H48—C26—H49109.5
O24—Ba1—O2758.58 (6)C26—O27—C28110.8 (2)
O24—Ba1—O30111.57 (5)O27—C28—C29109.2 (2)
O27—Ba1—O3057.95 (5)O27—C28—H46109.4
O24—Ba1—O33153.87 (5)C29—C28—H46110.7
O27—Ba1—O33116.84 (5)O27—C28—H47108.7
O30—Ba1—O3358.94 (5)C29—C28—H47109.5
O24—Ba1—O6078.38 (6)H46—C28—H47109.3
O27—Ba1—O6079.49 (6)C28—C29—O30108.2 (2)
O30—Ba1—O6067.77 (5)C28—C29—H44110.7
O3—S2—O4112.80 (10)O30—C29—H44111.1
O3—S2—O5116.11 (10)C28—C29—H45107.9
O4—S2—O5115.10 (10)O30—C29—H45109.4
O3—S2—C6104.15 (10)H44—C29—H45109.4
O4—S2—C6103.97 (11)C29—O30—C31112.9 (2)
O5—S2—C6102.62 (10)O30—C31—C32108.66 (19)
S2—C6—F7111.90 (15)O30—C31—H42110.2
S2—C6—F8110.42 (18)C32—C31—H42111.6
F7—C6—F8107.6 (2)O30—C31—H43109.0
S2—C6—F9110.85 (16)C32—C31—H43108.9
F7—C6—F9108.3 (2)H42—C31—H43108.4
F8—C6—F9107.6 (2)C31—C32—O33108.8 (2)
O11—S10—O12115.32 (13)C31—C32—H40110.1
O11—S10—O13114.89 (14)O33—C32—H40109.0
O12—S10—O13114.95 (12)C31—C32—H41110.4
O11—S10—C14102.02 (12)O33—C32—H41109.9
O12—S10—C14103.74 (12)H40—C32—H41108.6
O13—S10—C14103.41 (13)C32—O33—C34110.17 (18)
S10—C14—F15112.46 (18)O33—C34—C35109.32 (19)
S10—C14—F16111.11 (18)O33—C34—H38107.4
F15—C14—F16106.6 (2)C35—C34—H38111.2
S10—C14—F17111.77 (19)O33—C34—H39108.7
F15—C14—F17107.8 (2)C35—C34—H39111.1
F16—C14—F17106.8 (2)H38—C34—H39109.1
C19—O18—C35112.02 (17)C34—C35—O18108.0 (2)
O18—C19—C20108.15 (18)C34—C35—H36110.3
Ba1—O60—O11ii123.03 (8)O18—C35—H36109.5
Ba1—O60—O13iii122.84 (8)C34—C35—H37109.9
O11ii—O60—O13iii110.59 (9)O18—C35—H37110.3
O18—C19—H58109.6H36—C35—H37108.8
C20—C19—H58111.1H61—O60—H62107.6
O(4)—Ba(1)—O(3)—S(2)3.37 (7)O(4)—Ba(1)—O(18)—C(19)29.00 (15)
O(24)—Ba(1)—O(3)—S(2)35.53 (9)Ba(1)—O(27)—C(26)—C(25)38.9 (3)
O(33)—Ba(1)—O(3)—S(2)160.50 (8)C(26)—O(27)—C(28)—C(29)177.7 (2)
O(3)—Ba(1)—O(4)—S(2)3.37 (7)Ba(1)—O(30)—C(31)—C(32)52.9 (2)
O(24)—Ba(1)—O(4)—S(2)152.88 (10)C(34)—O(33)—C(32)—C(31)179.39 (19)
O(33)—Ba(1)—O(4)—S(2)18.58 (12)O(18)—C(19)—C(20)—O(21)58.5 (3)
O(3)—Ba(1)—O(18)—C(19)59.98 (14)O(27)—C(28)—C(29)—O(30)60.3 (3)
O(18)—Ba(1)—O(3)—S(2)141.49 (9)C(28)—O(27)—C(26)—C(25)179.8 (2)
O(27)—Ba(1)—O(3)—S(2)33.69 (11)Ba(1)—O(30)—C(29)—C(28)56.3 (2)
O(60)—Ba(1)—O(3)—S(2)139.44 (9)C(29)—O(30)—C(31)—C(32)171.0 (2)
O(18)—Ba(1)—O(4)—S(2)44.24 (9)Ba(1)—O(33)—C(34)—C(35)36.3 (2)
O(27)—Ba(1)—O(4)—S(2)152.13 (8)O(21)—C(22)—C(23)—O(24)59.7 (3)
O(60)—Ba(1)—O(4)—S(2)130.14 (10)O(30)—C(31)—C(32)—O(33)63.1 (2)
O(3)—Ba(1)—O(18)—C(35)70.12 (15)Ba(1)—O(27)—C(28)—C(29)37.2 (3)
O(21)—Ba(1)—O(3)—S(2)81.40 (8)C(31)—O(30)—C(29)—C(28)167.8 (2)
O(30)—Ba(1)—O(3)—S(2)115.32 (8)Ba(1)—O(33)—C(32)—C(31)43.4 (2)
O(5)i—Ba(1)—O(3)—S(2)78.56 (8)C(32)—O(33)—C(34)—C(35)173.37 (19)
O(21)—Ba(1)—O(4)—S(2)91.88 (9)O(24)—C(25)—C(26)—O(27)63.3 (3)
O(30)—Ba(1)—O(4)—S(2)103.31 (9)O(33)—C(34)—C(35)—O(18)63.6 (2)
O(5)i—Ba(1)—O(4)—S(2)75.70 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H47···O13iii0.972.513.384 (4)149
C26—H48···O11iv0.972.473.316 (4)146
C20—H56···O120.982.593.310 (4)130
O60—H61···O13iii0.861.962.811 (4)171
O60—H62···O11ii0.861.952.801 (4)168
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ba2(CF3O3S)2(C12H24O6)2(H2O)2](CF3O3S)2
Mr1465.34
Crystal system, space groupTriclinic, P1
Temperature (K)175
a, b, c (Å)8.942 (1), 12.3257 (16), 12.7431 (14)
α, β, γ (°)68.629 (12), 87.576 (10), 83.212 (10)
V3)1298.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.35 × 0.16 × 0.11
Data collection
DiffractometerOxford Diffraction GEMINI
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
23806, 9409, 6364
Rint0.022
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.022, 1.11
No. of reflections6364
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR2004 (Burla et al., 2003), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), Mercury (Macrae et al., 2006) and DrawXtl (Finger et al., 2007).

Selected bond lengths (Å) top
Ba1—O32.9825 (17)Ba1—O242.8375 (17)
Ba1—O42.9669 (17)Ba1—O272.8701 (17)
Ba1—O5i2.8504 (16)Ba1—O302.8344 (16)
Ba1—O182.8336 (15)Ba1—O332.8567 (15)
Ba1—O212.8259 (16)Ba1—O602.6916 (18)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H47···O13ii0.972.513.384 (4)149
C26—H48···O11iii0.972.473.316 (4)146
C20—H56···O120.982.593.310 (4)130
O60—H61···O13ii0.861.962.811 (4)171
O60—H62···O11iv0.861.952.801 (4)168
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1, z; (iv) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds