Download citation
Download citation
link to html
In the title compound, [Mn(NCS)2(C5H5N)4], the Mn atom lies on an inversion centre and assumes a distorted octa­hedral geometry defined by four N atoms from four pyridine mol­ecules and two thio­cyanate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807062459/pv2046sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807062459/pv2046Isup2.hkl
Contains datablock I

CCDC reference: 672770

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.090
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C1 .. 5.93 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

A series of complexes of the type MP4X2 (Long & Clarke, 1978; Deng et al., 2006; Cheng et al., 2004)(where M is a divalent transition metal, P is a pyridine derivative and X is a halide or thiocyanate ion) have been synthesized. We have synthesized the title compound, (I), and characterized it by X-ray diffraction and elemental analysis which is reported in this paper.

In the structure of (I) (Fig. 1), the Mn atom lies on an inversion centre and assumes an octahedral coordination geometry from four N-bonded pyridy molecules and two N-bonded thiocyanate anions. The basal plane consisits of four pyridyl N atoms, with bond lengths in the rang 2.3188 (19)–2.3057 (19) Å. The apical positions are occupied by two thiocyanate N atoms, with equal bond distances. The complex exhibits a one dimensional chain structure via short intermolecular contact of the type C—H···S which are consistent with the similar contacts reported earlier (Ma et al., 2007).

The structural features of (I) are very similar to the early results reported for tetrakis(pyridine)metal (Ni, Fe, Co) chloride complexes (Long & Clarke, 1978).

Related literature top

For the crystal structure of manganese complexes with related ligands, see: Long & Clarke (1978); Deng et al. (2006); Cheng et al. (2004).

For related literature, see: Ma et al. (2007).

Experimental top

A mixtutre of solutions of Mn(OAc)2. 7 H2O (0.0450 g, 0.2 mmol) in MeOH (10 ml) and NaSCN (0.0324 g, 0.4 mmol) in pyridine (10 ml) was stirred for four hours and brown single crystals were obtained after allowing the solution to stand at room temperature for three weeks.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93 Å (pylidyl) [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atomic numbering and 30% probability displacement ellipsoids; symmetry code for atoms labelled with A: -x + 1/2, -y + 1/2, -z + 1.
trans-Tetrakis(pyridine-κN)bis(thiocyanato-κN)manganese top
Crystal data top
[Mn(NCS)2(C5H5N)4]F(000) = 1004
Mr = 487.50Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2791 reflections
a = 12.4982 (12) Åθ = 2.3–26.7°
b = 13.1542 (14) ŵ = 0.75 mm1
c = 15.236 (2) ÅT = 298 K
β = 107.413 (2)°Block, brown
V = 2390.1 (5) Å30.56 × 0.42 × 0.37 mm
Z = 4
Data collection top
CCD area-detector
diffractometer
2107 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.680, Tmax = 0.769k = 715
5844 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0386P)2 + 2.2714P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2107 reflectionsΔρmax = 0.28 e Å3
143 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (6)
Crystal data top
[Mn(NCS)2(C5H5N)4]V = 2390.1 (5) Å3
Mr = 487.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.4982 (12) ŵ = 0.75 mm1
b = 13.1542 (14) ÅT = 298 K
c = 15.236 (2) Å0.56 × 0.42 × 0.37 mm
β = 107.413 (2)°
Data collection top
CCD area-detector
diffractometer
2107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1661 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.769Rint = 0.030
5844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2107 reflectionsΔρmin = 0.29 e Å3
143 parameters
Special details top

Experimental. Elemental analysis: calculated for C22H20MnN6S2: C 54.20, H 4.14, N 16.42%; found: C 54.21, H 4.13, N 16.40%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25000.25000.50000.04435 (19)
N10.10819 (16)0.16743 (16)0.51970 (15)0.0601 (6)
N20.21099 (15)0.18519 (15)0.35223 (13)0.0498 (5)
N30.36836 (16)0.11699 (15)0.56271 (13)0.0524 (5)
S10.07605 (6)0.14598 (6)0.58350 (6)0.0735 (3)
C10.03139 (19)0.15820 (16)0.54594 (15)0.0453 (5)
C20.1569 (2)0.0971 (2)0.32889 (18)0.0599 (7)
H20.13230.06330.37300.072*
C30.1355 (2)0.0536 (2)0.2437 (2)0.0711 (8)
H30.09910.00880.23110.085*
C40.1684 (2)0.1034 (3)0.1779 (2)0.0797 (9)
H40.15410.07600.11920.096*
C50.2228 (3)0.1940 (3)0.1993 (2)0.0806 (9)
H50.24570.22940.15530.097*
C60.2435 (2)0.2326 (2)0.28698 (18)0.0626 (7)
H60.28160.29400.30120.075*
C70.3356 (2)0.0206 (2)0.5493 (2)0.0664 (7)
H70.26130.00740.51650.080*
C80.4055 (3)0.0603 (2)0.5813 (2)0.0847 (10)
H80.37950.12660.56910.102*
C90.5135 (3)0.0418 (3)0.6309 (3)0.0924 (11)
H90.56250.09520.65410.111*
C100.5488 (3)0.0562 (3)0.6461 (2)0.0907 (10)
H100.62250.07090.67960.109*
C110.4744 (2)0.1328 (2)0.6113 (2)0.0701 (8)
H110.49940.19960.62220.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0405 (3)0.0446 (3)0.0497 (3)0.0004 (2)0.0162 (2)0.0014 (2)
N10.0493 (11)0.0643 (13)0.0705 (14)0.0099 (10)0.0239 (11)0.0002 (11)
N20.0461 (10)0.0537 (12)0.0503 (11)0.0016 (9)0.0154 (9)0.0013 (10)
N30.0487 (11)0.0514 (12)0.0582 (12)0.0034 (9)0.0178 (10)0.0047 (10)
S10.0721 (5)0.0691 (5)0.0963 (6)0.0056 (4)0.0509 (4)0.0024 (4)
C10.0485 (12)0.0377 (12)0.0474 (13)0.0022 (10)0.0109 (11)0.0023 (10)
C20.0568 (15)0.0658 (17)0.0580 (16)0.0058 (13)0.0188 (12)0.0054 (13)
C30.0616 (16)0.082 (2)0.0677 (18)0.0056 (14)0.0169 (14)0.0206 (16)
C40.0650 (18)0.116 (3)0.0544 (17)0.0082 (18)0.0119 (14)0.0205 (18)
C50.079 (2)0.115 (3)0.0547 (17)0.009 (2)0.0302 (15)0.0157 (18)
C60.0597 (15)0.0704 (18)0.0575 (16)0.0016 (13)0.0174 (13)0.0095 (13)
C70.0664 (16)0.0559 (16)0.0783 (19)0.0019 (13)0.0236 (14)0.0101 (14)
C80.110 (3)0.0530 (17)0.103 (2)0.0173 (17)0.050 (2)0.0166 (16)
C90.093 (3)0.089 (3)0.103 (3)0.046 (2)0.041 (2)0.035 (2)
C100.0607 (18)0.099 (3)0.103 (3)0.0258 (18)0.0096 (17)0.021 (2)
C110.0565 (16)0.0679 (18)0.0804 (19)0.0057 (14)0.0120 (14)0.0030 (15)
Geometric parameters (Å, º) top
Mn1—N1i2.1747 (19)C3—H30.9300
Mn1—N12.1747 (19)C4—C51.362 (5)
Mn1—N3i2.3057 (19)C4—H40.9300
Mn1—N32.3057 (19)C5—C61.379 (4)
Mn1—N2i2.3188 (19)C5—H50.9300
Mn1—N22.3188 (19)C6—H60.9300
N1—C11.151 (3)C7—C81.371 (4)
N2—C21.336 (3)C7—H70.9300
N2—C61.336 (3)C8—C91.356 (5)
N3—C111.327 (3)C8—H80.9300
N3—C71.329 (3)C9—C101.360 (5)
S1—C11.617 (2)C9—H90.9300
C2—C31.369 (4)C10—C111.366 (4)
C2—H20.9300C10—H100.9300
C3—C41.360 (4)C11—H110.9300
N1i—Mn1—N1180.00C4—C3—H3120.6
N1i—Mn1—N3i90.69 (7)C2—C3—H3120.6
N1—Mn1—N3i89.31 (7)C3—C4—C5118.9 (3)
N1i—Mn1—N389.31 (7)C3—C4—H4120.5
N1—Mn1—N390.69 (7)C5—C4—H4120.5
N3i—Mn1—N3180.00C4—C5—C6119.4 (3)
N1i—Mn1—N2i90.41 (7)C4—C5—H5120.3
N1—Mn1—N2i89.59 (7)C6—C5—H5120.3
N3i—Mn1—N2i92.62 (7)N2—C6—C5122.5 (3)
N3—Mn1—N2i87.38 (7)N2—C6—H6118.7
N1i—Mn1—N289.59 (7)C5—C6—H6118.7
N1—Mn1—N290.41 (7)N3—C7—C8123.5 (3)
N3i—Mn1—N287.38 (7)N3—C7—H7118.3
N3—Mn1—N292.62 (7)C8—C7—H7118.3
N2i—Mn1—N2180.0C9—C8—C7118.7 (3)
C1—N1—Mn1154.0 (2)C9—C8—H8120.6
C2—N2—C6116.7 (2)C7—C8—H8120.6
C2—N2—Mn1121.34 (16)C8—C9—C10118.9 (3)
C6—N2—Mn1121.90 (17)C8—C9—H9120.5
C11—N3—C7116.5 (2)C10—C9—H9120.5
C11—N3—Mn1121.45 (18)C9—C10—C11119.0 (3)
C7—N3—Mn1122.01 (17)C9—C10—H10120.5
N1—C1—S1179.5 (2)C11—C10—H10120.5
N2—C2—C3123.7 (3)N3—C11—C10123.4 (3)
N2—C2—H2118.2N3—C11—H11118.3
C3—C2—H2118.2C10—C11—H11118.3
C4—C3—C2118.8 (3)
N3i—Mn1—N1—C153.0 (4)N2i—Mn1—N3—C7125.3 (2)
N3—Mn1—N1—C1127.0 (4)N2—Mn1—N3—C754.7 (2)
N2i—Mn1—N1—C139.6 (4)C6—N2—C2—C31.1 (4)
N2—Mn1—N1—C1140.4 (4)Mn1—N2—C2—C3177.5 (2)
N1i—Mn1—N2—C2154.24 (18)N2—C2—C3—C41.6 (4)
N1—Mn1—N2—C225.76 (18)C2—C3—C4—C50.9 (4)
N3i—Mn1—N2—C2115.04 (18)C3—C4—C5—C60.3 (4)
N3—Mn1—N2—C264.96 (18)C2—N2—C6—C50.2 (4)
N1i—Mn1—N2—C624.21 (19)Mn1—N2—C6—C5178.7 (2)
N1—Mn1—N2—C6155.79 (19)C4—C5—C6—N20.9 (4)
N3i—Mn1—N2—C666.50 (19)C11—N3—C7—C81.2 (4)
N3—Mn1—N2—C6113.50 (19)Mn1—N3—C7—C8176.2 (2)
N1i—Mn1—N3—C1133.1 (2)N3—C7—C8—C91.4 (5)
N1—Mn1—N3—C11146.9 (2)C7—C8—C9—C100.9 (5)
N2i—Mn1—N3—C1157.3 (2)C8—C9—C10—C110.3 (6)
N2—Mn1—N3—C11122.7 (2)C7—N3—C11—C100.6 (4)
N1i—Mn1—N3—C7144.2 (2)Mn1—N3—C11—C10176.9 (2)
N1—Mn1—N3—C735.8 (2)C9—C10—C11—N30.1 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C5H5N)4]
Mr487.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.4982 (12), 13.1542 (14), 15.236 (2)
β (°) 107.413 (2)
V3)2390.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.56 × 0.42 × 0.37
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
5844, 2107, 1661
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.00
No. of reflections2107
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Mn1—N12.1747 (19)Mn1—N22.3188 (19)
Mn1—N32.3057 (19)
N1—Mn1—N3i89.31 (7)N3—Mn1—N2i87.38 (7)
N1—Mn1—N390.69 (7)N1—Mn1—N290.41 (7)
N1—Mn1—N2i89.59 (7)N3—Mn1—N292.62 (7)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds