Download citation
Download citation
link to html
In the title compound, [MnCl2(C16H15N5)(CH4O)], the manganese(II) cation is six-coordinate, forming a distorted octa­hedral configuration with bis­(1H-benzimidazol-2-yl­methyl)­amine (IDB) serving as a neutral tridentate chelating ligand. Two imine and one amine N atoms from IDB and one Cl anion form the equatorial plane. The two axial positions are occupied by the methanol O atom and the other Cl anion. By a combination of two N–H...Cl and one O—H...Cl hydrogen bonds, mol­ecules are linked into a three-dimensional network which is strengthened by weak C—H...π and π–π inter­actions [inter­planar spacing = 3.343 (1) Å, ring-centroid separation = 3.728 (3) Å, corresponding to a ring offset of 1.650 (1) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058783/rk2061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058783/rk2061Isup2.hkl
Contains datablock I

CCDC reference: 672729

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.052
  • wR factor = 0.129
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.72 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.02 Ratio PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1D ... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Di(2-benzimidazolylmethyl)imine (IDB) is a very often used organic N-containing ligand in preparing for metal model complexes aming to mimic the active sites found in natural metalloproteins (Calderazzo et al., 2003; Xu et al., 2003; Gross et al., 2000). In a continuation of our studies on the molecular and supramolecular structure in IDB-containing analogas (Meng et al., 2006a, 2006b; Yu et al., 2006; Liao et al., 2000), now we report the structure of the I.

Compound I have similar unit-cell parameters to the earlier reported ferrous complex (Calderazzo et al., 2003). However, except for the discussion of the metal coordination bond lengths and bond angles in earlier paper, no any description involved with the crystall packing has been given. As expected, the Mn(II) cation in I displays a distorted octahedral coordination geometry which is very simiar to the recently reported analog in which the coordinated ethanol molecule is displaced by methanol here (Yu et al., 2006). Atoms N1/N3/N5/Cl2 from the equatorial plane and the axial positions are occupied by methanol O atom and the Cl1 anion (Fig.1). The Mn—Namine distance is about 0.22Å longer than those between the Mn—Nimine distance. The Mn—Cl bond length involving the axial atom Cl1 is about 0.21Å longer than that involving the equatorial atom Cl2.

In the supramolecular structrue formed by a combination of N(O)···Cl1 hydrogen bonds, C–H···π and π···π interactions, molecules are linked into a three-dimensional network which can be easily analyzed in terms of several substructures listed below.

Firstly, methanol O1 atom in the initial molecule (x, y, z) acting as H-bonding donor, via H1C, to the equatorial Cl1iii atom so forming by tranlation a one-dimensional chain running parallel to the [1 0 0] direction. Similarly, imine N4 atom in the initial molecule acts as H-bonding donor to another Cl1i atom, producing the other one-dimensional chains along the [0 1 0] direction, but this time generated by the 21 axis. These two types of H-bondings suffices linked the molecules I into a two-dimensional network (Fig.2) running parallel to the [0 0 1] direction.

Secondly, the third H-bonding N2–H2A···Cl1ii linked the reference and symmetry related molecules into a centrosymmetric R22(16) ring centered at (1, 1/2, 0). Propagation by inversion of this interaction then generates the simple three-dimensional network (Fig.3).

The crystal packing is stablized by C–H···π and ππ interactions. The initial N2/N3/C2/C3/C8 imidazole ring and N2iv/N3iv/C2iv/C3iv/C8iv have an interplanar spacing of 3.343 (1) Å; the ring-centroid separation is 3.728 (3) Å, corresponding to a ring offset of 1.650 (1) Å. Symmetry codes: (i) 5/2 - x, 1/2 + y, 1/2 - z; (ii) 2 - x,1 - y,-z; (iii) x - 1, y, z; (iv) 1 - x, 1 - y,-z.

Related literature top

For related literature, see: Calderazzo et al. (2003); Gross et al. (2000); Liao et al. (2000); Meng et al. (2006a,b); Xu et al. (2003); Yu et al. (2006).

Experimental top

All reagents and solvents were used as obtained without further purification. Compound I was synthesized by refluxing stoichiometric quantities (1:1 molar ratio) of IDB (0.28 g, 1.0 mmol) and manganese(II) chloride tetrahydrate (0.20 g, 1 mmol) in methanol (20 ml) at 333 K for 2 h. The solution was cooled to room temperature, filtered and evaporated to obtain the product (yield 40%). Block colourless crystals of I suitable for X-ray single-crystal diffraction were grown by slow evaporation of the methanol solution.

Refinement top

H atoms bonded to carbon atoms were located at the geometrical positions with C–H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl); Uĩso~(H) = 1.2U~eq~(aromatic and methylene C) and 1.5Ueq(methyl C). All the other H atoms were located from the difference maps with the constraints of Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O) and the N (or O)–H distances were refined freely. Cg1 is the centroid defined by phenyl atoms C11/C16.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are presented as spheres at arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of I, showing the formation of the two-dimensional network running parallel to the [0 0 1] direction. Hydrogen bonding are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of I, showing the formation of the three-dimensional network. Hydrogen bonding are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.
[Bis(1H-benzimidazol-2-ylmethyl)amine- κ3N,N',N'']dichlorido(methanol)manganese(II) top
Crystal data top
[MnCl2(C16H15N5)(CH4O)]F(000) = 892
Mr = 435.21Dx = 1.523 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 752 reflections
a = 7.2064 (6) Åθ = 2.6–21.0°
b = 13.8208 (11) ŵ = 0.99 mm1
c = 19.3825 (15) ÅT = 297 K
β = 100.608 (2)°Block, colorless
V = 1897.5 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4112 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
0.3° wide ω–scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; (Sheldrick, 2001)
h = 99
Tmin = 0.826, Tmax = 0.907k = 1717
14752 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
4112 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[MnCl2(C16H15N5)(CH4O)]V = 1897.5 (3) Å3
Mr = 435.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2064 (6) ŵ = 0.99 mm1
b = 13.8208 (11) ÅT = 297 K
c = 19.3825 (15) Å0.20 × 0.10 × 0.10 mm
β = 100.608 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4112 independent reflections
Absorption correction: multi-scan
(SADABS; (Sheldrick, 2001)
2639 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.907Rint = 0.068
14752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.52 e Å3
4112 reflectionsΔρmin = 0.35 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.91501 (7)0.48326 (3)0.21677 (3)0.03220 (17)
C10.8660 (5)0.6318 (2)0.08502 (18)0.0388 (8)
H1A0.98960.63950.07260.047*
H1B0.78380.68190.06120.047*
C20.7881 (5)0.5346 (2)0.06223 (17)0.0342 (8)
C30.6897 (5)0.4104 (2)0.00642 (17)0.0350 (8)
C40.6300 (5)0.3455 (3)0.06046 (19)0.0431 (9)
H40.61730.36380.10730.052*
C50.5906 (5)0.2535 (3)0.0419 (2)0.0479 (10)
H50.55130.20800.07690.058*
C60.6082 (5)0.2261 (3)0.0288 (2)0.0476 (10)
H60.58030.16280.03960.057*
C70.6658 (5)0.2910 (3)0.08260 (19)0.0433 (9)
H70.67580.27290.12940.052*
C80.7082 (5)0.3840 (2)0.06417 (17)0.0338 (8)
C91.0263 (6)0.7083 (3)0.19505 (18)0.0469 (10)
H9A0.97460.77320.19500.056*
H9B1.13010.70960.16960.056*
C101.0954 (5)0.6761 (2)0.26850 (17)0.0372 (8)
C111.2508 (5)0.6760 (2)0.37731 (19)0.0392 (9)
C121.3639 (6)0.6942 (3)0.4423 (2)0.0540 (11)
H121.43380.75090.45110.065*
C131.3668 (6)0.6248 (3)0.4922 (2)0.0564 (11)
H131.43830.63530.53660.068*
C141.2677 (6)0.5393 (3)0.4793 (2)0.0557 (11)
H141.27420.49390.51510.067*
C151.1584 (6)0.5197 (3)0.4140 (2)0.0461 (9)
H151.09230.46190.40520.055*
C161.1519 (5)0.5898 (2)0.36275 (18)0.0368 (8)
C170.6031 (7)0.5393 (5)0.3127 (3)0.0925 (18)
H17A0.71980.53210.34540.139*
H17B0.51210.49410.32410.139*
H17C0.55650.60400.31530.139*
Cl11.22979 (12)0.45919 (6)0.16820 (5)0.0397 (2)
Cl20.92642 (16)0.32687 (7)0.27362 (5)0.0570 (3)
N10.8810 (4)0.6417 (2)0.16111 (15)0.0381 (7)
H1D0.779 (3)0.660 (3)0.1722 (18)0.046*
N20.7420 (4)0.5069 (2)0.00540 (15)0.0390 (7)
H2A0.753 (5)0.543 (2)0.0413 (14)0.047*
N30.7698 (4)0.46425 (19)0.10614 (14)0.0341 (7)
N41.2130 (4)0.7290 (2)0.31645 (17)0.0445 (8)
H4A1.238 (5)0.7869 (15)0.3082 (18)0.053*
N51.0545 (4)0.59134 (19)0.29307 (14)0.0344 (7)
O10.6339 (4)0.5209 (2)0.24405 (15)0.0537 (8)
H1C0.538 (7)0.498 (3)0.222 (3)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0362 (3)0.0311 (3)0.0296 (3)0.0019 (2)0.0069 (2)0.0009 (2)
C10.037 (2)0.039 (2)0.041 (2)0.0014 (16)0.0091 (16)0.0113 (16)
C20.032 (2)0.039 (2)0.0318 (19)0.0018 (15)0.0055 (15)0.0052 (15)
C30.0258 (19)0.047 (2)0.0329 (19)0.0029 (15)0.0074 (15)0.0024 (16)
C40.040 (2)0.055 (2)0.036 (2)0.0002 (18)0.0122 (17)0.0039 (17)
C50.046 (2)0.054 (2)0.045 (2)0.0026 (19)0.0109 (18)0.0135 (19)
C60.044 (2)0.043 (2)0.057 (3)0.0089 (18)0.0147 (19)0.0004 (19)
C70.045 (2)0.048 (2)0.038 (2)0.0049 (18)0.0123 (17)0.0033 (17)
C80.0249 (18)0.044 (2)0.0323 (18)0.0026 (15)0.0045 (14)0.0004 (15)
C90.062 (3)0.035 (2)0.046 (2)0.0116 (18)0.015 (2)0.0004 (17)
C100.044 (2)0.034 (2)0.036 (2)0.0037 (15)0.0146 (17)0.0064 (15)
C110.035 (2)0.039 (2)0.044 (2)0.0013 (16)0.0108 (17)0.0080 (17)
C120.045 (3)0.058 (3)0.058 (3)0.007 (2)0.005 (2)0.021 (2)
C130.053 (3)0.058 (3)0.052 (3)0.007 (2)0.007 (2)0.011 (2)
C140.061 (3)0.058 (3)0.047 (2)0.012 (2)0.004 (2)0.004 (2)
C150.050 (2)0.039 (2)0.049 (2)0.0008 (18)0.0064 (19)0.0021 (18)
C160.036 (2)0.038 (2)0.038 (2)0.0001 (15)0.0099 (16)0.0084 (16)
C170.066 (3)0.147 (5)0.072 (3)0.011 (3)0.033 (3)0.042 (3)
Cl10.0371 (5)0.0421 (5)0.0412 (5)0.0014 (4)0.0109 (4)0.0014 (4)
Cl20.0804 (8)0.0424 (6)0.0490 (6)0.0045 (5)0.0138 (5)0.0134 (4)
N10.0419 (19)0.0393 (17)0.0360 (17)0.0008 (14)0.0150 (14)0.0014 (13)
N20.0452 (19)0.0418 (18)0.0307 (17)0.0015 (14)0.0088 (14)0.0059 (13)
N30.0335 (17)0.0389 (16)0.0287 (15)0.0015 (12)0.0026 (12)0.0006 (12)
N40.052 (2)0.0340 (17)0.050 (2)0.0144 (15)0.0159 (16)0.0113 (15)
N50.0339 (17)0.0329 (16)0.0373 (16)0.0025 (12)0.0087 (13)0.0051 (12)
O10.0311 (15)0.077 (2)0.0546 (18)0.0044 (14)0.0127 (13)0.0170 (15)
Geometric parameters (Å, º) top
Mn1—N52.209 (3)C9—C101.487 (5)
Mn1—N32.222 (3)C9—H9A0.9700
Mn1—O12.247 (3)C9—H9B0.9700
Mn1—Cl22.4207 (10)C10—N51.318 (4)
Mn1—N12.434 (3)C10—N41.351 (4)
Mn1—Cl12.6322 (10)C11—N41.373 (5)
C1—N11.465 (4)C11—C161.390 (5)
C1—C21.492 (5)C11—C121.391 (5)
C1—H1A0.9700C12—C131.361 (6)
C1—H1B0.9700C12—H120.9300
C2—N31.314 (4)C13—C141.379 (6)
C2—N21.347 (4)C13—H130.9300
C3—N21.385 (4)C14—C151.389 (5)
C3—C41.386 (5)C14—H140.9300
C3—C81.399 (4)C15—C161.383 (5)
C4—C51.365 (5)C15—H150.9300
C4—H40.9300C16—N51.403 (4)
C5—C61.405 (5)C17—O11.412 (5)
C5—H50.9300C17—H17A0.9600
C6—C71.380 (5)C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.383 (5)N1—H1D0.839 (18)
C7—H70.9300N2—H2A0.871 (18)
C8—N31.399 (4)N4—H4A0.842 (18)
C9—N11.457 (4)O1—H1C0.80 (5)
N5—Mn1—N3143.27 (10)N5—C10—N4112.7 (3)
N5—Mn1—O190.26 (10)N5—C10—C9123.7 (3)
N3—Mn1—O188.26 (10)N4—C10—C9123.6 (3)
N5—Mn1—Cl2109.02 (8)N4—C11—C16105.6 (3)
N3—Mn1—Cl2107.71 (8)N4—C11—C12132.2 (3)
O1—Mn1—Cl293.23 (8)C16—C11—C12122.2 (4)
N5—Mn1—N171.61 (10)C13—C12—C11116.5 (4)
N3—Mn1—N171.79 (10)C13—C12—H12121.8
O1—Mn1—N182.78 (10)C11—C12—H12121.8
Cl2—Mn1—N1175.97 (8)C12—C13—C14122.4 (4)
N5—Mn1—Cl190.52 (7)C12—C13—H13118.8
N3—Mn1—Cl185.63 (8)C14—C13—H13118.8
O1—Mn1—Cl1170.78 (8)C13—C14—C15121.3 (4)
Cl2—Mn1—Cl195.20 (4)C13—C14—H14119.3
N1—Mn1—Cl188.75 (7)C15—C14—H14119.3
N1—C1—C2109.6 (3)C16—C15—C14117.2 (4)
N1—C1—H1A109.7C16—C15—H15121.4
C2—C1—H1A109.7C14—C15—H15121.4
N1—C1—H1B109.7C15—C16—C11120.4 (3)
C2—C1—H1B109.7C15—C16—N5130.3 (3)
H1A—C1—H1B108.2C11—C16—N5109.3 (3)
N3—C2—N2112.5 (3)O1—C17—H17A109.5
N3—C2—C1123.5 (3)O1—C17—H17B109.5
N2—C2—C1123.8 (3)H17A—C17—H17B109.5
N2—C3—C4132.8 (3)O1—C17—H17C109.5
N2—C3—C8105.1 (3)H17A—C17—H17C109.5
C4—C3—C8122.1 (3)H17B—C17—H17C109.5
C5—C4—C3117.0 (3)C9—N1—C1115.3 (3)
C5—C4—H4121.5C9—N1—Mn1111.3 (2)
C3—C4—H4121.5C1—N1—Mn1110.2 (2)
C4—C5—C6121.5 (4)C9—N1—H1D107 (3)
C4—C5—H5119.3C1—N1—H1D112 (3)
C6—C5—H5119.3Mn1—N1—H1D100 (3)
C7—C6—C5121.5 (4)C2—N2—C3107.8 (3)
C7—C6—H6119.2C2—N2—H2A125 (2)
C5—C6—H6119.2C3—N2—H2A127 (2)
C6—C7—C8117.3 (3)C2—N3—C8105.6 (3)
C6—C7—H7121.4C2—N3—Mn1116.9 (2)
C8—C7—H7121.4C8—N3—Mn1134.2 (2)
C7—C8—C3120.6 (3)C10—N4—C11107.6 (3)
C7—C8—N3130.4 (3)C10—N4—H4A121 (2)
C3—C8—N3108.9 (3)C11—N4—H4A131 (2)
N1—C9—C10109.2 (3)C10—N5—C16104.8 (3)
N1—C9—H9A109.8C10—N5—Mn1117.6 (2)
C10—C9—H9A109.8C16—N5—Mn1136.0 (2)
N1—C9—H9B109.8C17—O1—Mn1124.6 (3)
C10—C9—H9B109.8C17—O1—H1C107 (4)
H9A—C9—H9B108.3Mn1—O1—H1C121 (4)
N1—C1—C2—N311.2 (5)C1—C2—N3—C8175.0 (3)
N1—C1—C2—N2173.9 (3)N2—C2—N3—Mn1162.9 (2)
N2—C3—C4—C5179.5 (4)C1—C2—N3—Mn112.5 (4)
C8—C3—C4—C50.4 (5)C7—C8—N3—C2179.7 (4)
C3—C4—C5—C60.6 (5)C3—C8—N3—C20.4 (4)
C4—C5—C6—C70.0 (6)C7—C8—N3—Mn122.3 (5)
C5—C6—C7—C80.8 (5)C3—C8—N3—Mn1158.4 (2)
C6—C7—C8—C31.0 (5)N5—Mn1—N3—C214.7 (3)
C6—C7—C8—N3179.8 (3)O1—Mn1—N3—C2102.8 (3)
N2—C3—C8—C7179.7 (3)Cl2—Mn1—N3—C2164.4 (2)
C4—C3—C8—C70.4 (5)N1—Mn1—N3—C219.8 (2)
N2—C3—C8—N30.3 (4)Cl1—Mn1—N3—C270.3 (2)
C4—C3—C8—N3179.8 (3)N5—Mn1—N3—C8170.7 (3)
N1—C9—C10—N511.3 (5)O1—Mn1—N3—C8101.2 (3)
N1—C9—C10—N4171.4 (3)Cl2—Mn1—N3—C88.3 (3)
N4—C11—C12—C13179.2 (4)N1—Mn1—N3—C8175.9 (3)
C16—C11—C12—C132.7 (6)Cl1—Mn1—N3—C885.7 (3)
C11—C12—C13—C141.7 (6)N5—C10—N4—C110.7 (4)
C12—C13—C14—C150.1 (7)C9—C10—N4—C11178.3 (3)
C13—C14—C15—C160.6 (6)C16—C11—N4—C100.5 (4)
C14—C15—C16—C110.4 (5)C12—C11—N4—C10178.9 (4)
C14—C15—C16—N5179.5 (4)N4—C10—N5—C160.7 (4)
N4—C11—C16—C15179.3 (3)C9—C10—N5—C16178.2 (3)
C12—C11—C16—C152.1 (5)N4—C10—N5—Mn1167.3 (2)
N4—C11—C16—N50.1 (4)C9—C10—N5—Mn110.2 (4)
C12—C11—C16—N5178.7 (3)C15—C16—N5—C10178.8 (4)
C10—C9—N1—C1150.7 (3)C11—C16—N5—C100.4 (4)
C10—C9—N1—Mn124.3 (4)C15—C16—N5—Mn116.6 (6)
C2—C1—N1—C9153.1 (3)C11—C16—N5—Mn1164.3 (2)
C2—C1—N1—Mn126.1 (3)N3—Mn1—N5—C1012.2 (3)
N5—Mn1—N1—C922.7 (2)O1—Mn1—N5—C1099.7 (3)
N3—Mn1—N1—C9154.0 (3)Cl2—Mn1—N5—C10166.8 (2)
O1—Mn1—N1—C9115.4 (2)N1—Mn1—N5—C1017.4 (2)
Cl1—Mn1—N1—C968.2 (2)Cl1—Mn1—N5—C1071.2 (2)
N5—Mn1—N1—C1151.9 (2)N3—Mn1—N5—C16175.4 (3)
N3—Mn1—N1—C124.8 (2)O1—Mn1—N5—C1697.2 (3)
O1—Mn1—N1—C1115.4 (2)Cl2—Mn1—N5—C163.7 (3)
Cl1—Mn1—N1—C161.0 (2)N1—Mn1—N5—C16179.5 (3)
N3—C2—N2—C30.3 (4)Cl1—Mn1—N5—C1692.0 (3)
C1—C2—N2—C3175.1 (3)N5—Mn1—O1—C1740.7 (4)
C4—C3—N2—C2180.0 (4)N3—Mn1—O1—C17176.0 (4)
C8—C3—N2—C20.0 (4)Cl2—Mn1—O1—C1768.4 (4)
N2—C2—N3—C80.4 (4)N1—Mn1—O1—C17112.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl1i0.84 (2)2.43 (2)3.215 (3)156 (3)
N2—H2A···Cl1ii0.87 (2)2.49 (3)3.233 (3)144 (3)
O1—H1C···Cl1iii0.80 (5)2.34 (5)3.129 (3)168 (5)
C6—H6···Cg1iv0.932.753.354 (5)124
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C16H15N5)(CH4O)]
Mr435.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)7.2064 (6), 13.8208 (11), 19.3825 (15)
β (°) 100.608 (2)
V3)1897.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; (Sheldrick, 2001)
Tmin, Tmax0.826, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
14752, 4112, 2639
Rint0.068
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.129, 0.95
No. of reflections4112
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.35

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl1i0.842 (18)2.43 (2)3.215 (3)156 (3)
N2—H2A···Cl1ii0.871 (18)2.49 (3)3.233 (3)144 (3)
O1—H1C···Cl1iii0.80 (5)2.34 (5)3.129 (3)168 (5)
C6—H6···Cg1iv0.932.753.354 (5)124
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds