Download citation
Download citation
link to html
In the title compound, [Mn(C14H8N2O6)(H2O)4]n, each 6,6′-dihydr­oxy-3,3′-diazenediyldibenzoate ligand acts as a carboxyl­ate bridge, leading to the formation of polymeric chains running in the [110] direction. The Mn atom is hexa­coordinated in a distorted octa­hedral geometry by six O atoms from two ligands and four water mol­ecules [Mn—O = 2.1379 (16)–2.2082 (15) Å]. The crystal packing is stabilized by π–π inter­actions [centroid-to-centroid distances 3.830 (16) and 4.476 (17) Å] and inter­molecular O—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055717/rt2011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055717/rt2011Isup2.hkl
Contains datablock I

CCDC reference: 641729

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.033
  • wR factor = 0.102
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 6 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.80 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Mn1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.12 PLAT350_ALERT_3_C Short C-H Bond (0.96A) C3 - H5A ... 0.84 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 8 PLAT745_ALERT_1_C D-H Calc 0.842(2), Rep 0.84000 ...... Missing su O3 -H3A 1.555 1.555 PLAT745_ALERT_1_C D-H Calc 0.872(3), Rep 0.87000 ...... Missing su O4 -H4A 1.555 1.555 PLAT746_ALERT_1_C H...A Calc 1.709(2), Rep 1.71000 ...... Missing su H3A -O6 1.555 1.555 PLAT746_ALERT_1_C H...A Calc 1.725(2), Rep 1.73000 ...... Missing su H4A -O2 1.555 1.555 PLAT748_ALERT_1_C D-H..A Calc 160.7(3), Rep 161.00 ...... Missing su O3 -H3A -O6 1.555 1.555 1.555 PLAT748_ALERT_1_C D-H..A Calc 150.1(4), Rep 150.00 ...... Missing su O4 -H4A -O2 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Olsalazine - 3,3-azo-bis(6-hydroxybenzoic acid) - has been widely used to prevent and treat the inflammatory bowel diseases, such as ulcerative colitis (Klotz, 2005). Recently, we have successfully synthesized a serial of Zn (Tang, Tan, Chen & Cao, 2007), Cd and Co (Tang, Yang et al., 2007) complexes with olsalazine as building block. Also, we have reported a Mn complex of olsalazine crystallized in chiral group P4(3)2(1)2 (Tang, Tan & Cao, 2007), however in the condition of UV light- illumination with wavenumber 365 nm, to our surprise, we found the colour of the crystals turn from orange to deep red after two weeks. The further investigation by X-ray single-crystal structure analysis revealed that the space group change from P4(3)2(1)2 to P2(1)/c. Here we reported the new crystal structure of the title compound, (I)- a new Manganese complex of olsalazine.

In (I) (Fig. 1), the Mn atom is hexacoordinated (Fig. 1) by two O atoms from two L ligands (H2L = 3,3-azo-bis(6-hydroxybenzoic acid)) and four water molecules in a distorted octahedral geometry (Table 1). Two ligands are cis to each other in an octahedral environment. Each ligand L acts as a carboxylate bridge, that leads to formation of polymeric chain running in the direction [110]. Two neighbouring polymeric chains are paired by π···π interactions between the aromatic rings - the distances Cg1···Cg1i and Cg2···Cg2i are 3.830 (16) and 4.476 (17) Å, respectively [Cg1 and Cg2 are centroids of C3/C8/C10/C6/C12/C9 and C1/C2/C7/C13/C11/C5 rings, respectively; symmetry code: (i) 1 - x,-y,- -z; (ii) -x,-1 - y,- -z]. The crystal packing is further stabilized by the intermolecular O—H···O and O—H···N hydrogen bonds (Table 2).

Related literature top

For related literature, see: Riordan & Blair (1979); Klotz (2005); Tang, Tan & Cao (2007); Tang, Tan, Chen & Cao (2007); Tang, Yang et al. (2007).

Experimental top

MnCl2 was acquired from Aldrich, and 3,3-azo-bis(6-hydroxybenzoic acid) was synthesized according to the literature (Riordan & Blair, 1979). To a solution of 3,3-azo-bis(6-hydroxybenzoic acid) (301 mg, 1 mmol) in water (60 ml) and sodium hydroxide (1 M, 2 ml), MnCl2 (349 mg, 1 mmol) was added. The mixture was stirred at 373 K for 12 h and then filtered. Single-crystals were grown from the filtrate after six weeks (Tang et al., 2007), then moved to a box with UV light (365 nm)- illumination in room temperature. The orange crystals turned to deep red crystals about two weeks later. We collected and separated them carefully, then dried in a desiccator. The yield reaches 92 percent based on the orange crystals. Compound (I) is stable in air and insoluble in water.

Refinement top

The hydroxy and C-bound H atoms were placed in calculated postions (C—H = 0.93 Å, O—H = 0.82 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C,O). The water H atoms were located in a difference Fourier map and isotropically refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.39 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of a portion of the polymeric chain in (I), showing displacement ellipsoids drawn at the 30% probability level and the atomic labelling. Unlabelled atoms are related to labelled atoms by the symmetry code (x - 1, y - 1, z).
catena-Poly[[tetraaquamanganese(II)]-µ-6,6'-dihydroxy-3,3'- diazenediyldibenzoato-κ2O:O'] top
Crystal data top
[Mn(C14H8N2O6)(H2O)4]F(000) = 876
Mr = 427.23Dx = 1.660 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 935 reflections
a = 9.486 (2) Åθ = 2.2–26°
b = 11.490 (3) ŵ = 0.83 mm1
c = 16.322 (4) ÅT = 293 K
β = 106.076 (3)°Block, red
V = 1709.4 (7) Å30.31 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube2933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.80, Tmax = 0.84k = 1314
8959 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.55 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
3341 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.34 e Å3
16 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn(C14H8N2O6)(H2O)4]V = 1709.4 (7) Å3
Mr = 427.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.486 (2) ŵ = 0.83 mm1
b = 11.490 (3) ÅT = 293 K
c = 16.322 (4) Å0.31 × 0.23 × 0.21 mm
β = 106.076 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2933 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.84Rint = 0.019
8959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03316 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.55Δρmax = 0.34 e Å3
3341 reflectionsΔρmin = 0.37 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.71229 (3)0.36073 (2)0.210538 (18)0.03035 (13)
O4W0.84712 (17)0.45769 (13)0.31718 (7)0.0454 (4)
O60.57181 (16)0.26262 (12)0.10622 (9)0.0378 (3)
N20.09166 (19)0.14057 (13)0.00328 (11)0.0331 (4)
O50.4699 (2)0.13827 (14)0.17648 (10)0.0518 (5)
O40.30717 (19)0.50644 (14)0.04431 (10)0.0503 (4)
N10.12243 (19)0.10512 (15)0.06254 (10)0.0311 (4)
C140.4863 (2)0.17786 (17)0.10958 (12)0.0322 (4)
O30.5107 (2)0.25868 (15)0.05407 (10)0.0563 (5)
O3W0.88504 (19)0.23991 (14)0.21347 (7)0.0525 (4)
O2W0.6512 (2)0.25207 (16)0.30695 (10)0.0540 (4)
C130.3039 (2)0.03679 (17)0.02394 (13)0.0299 (4)
C120.1180 (2)0.39112 (18)0.04972 (13)0.0333 (4)
C110.4008 (2)0.12786 (16)0.02602 (13)0.0292 (4)
C100.0114 (2)0.23392 (16)0.01245 (12)0.0310 (4)
C90.2083 (2)0.41852 (17)0.03162 (13)0.0345 (4)
C80.1046 (2)0.26171 (19)0.09284 (13)0.0372 (5)
O1W0.5321 (2)0.47858 (14)0.20352 (11)0.0637 (5)
C70.2227 (2)0.01053 (16)0.05305 (12)0.0309 (4)
C60.0207 (2)0.29866 (18)0.05741 (12)0.0362 (5)
C50.4158 (2)0.17191 (19)0.05163 (13)0.0369 (5)
C30.2000 (3)0.35306 (19)0.10170 (15)0.0411 (5)
C20.2400 (3)0.0341 (2)0.12885 (14)0.0412 (5)
C10.3339 (3)0.1242 (2)0.12874 (14)0.0470 (6)
C40.1291 (3)0.45639 (19)0.12689 (14)0.0422 (5)
O20.22138 (18)0.53993 (13)0.11428 (10)0.0474 (4)
O10.0512 (2)0.42829 (17)0.19838 (10)0.0677 (6)
H13A0.301 (2)0.0110 (17)0.0730 (14)0.030 (5)*
H8A0.111 (3)0.2182 (17)0.1412 (15)0.036 (6)*
H1A0.336 (3)0.165 (2)0.1854 (17)0.047 (6)*
H2A0.178 (4)0.012 (3)0.178 (2)0.079 (10)*
H5A0.261 (3)0.3663 (18)0.1493 (18)0.042 (7)*
H6A0.0455 (7)0.2856 (8)0.11412 (19)0.062 (8)*
H2WB0.63230.25410.35490.055 (8)*
H4WB0.90930.49320.29750.074 (10)*
H3A0.5395 (5)0.2747 (2)0.00175 (8)0.058 (8)*
H4WA0.88320.44580.37030.085 (11)*
H3WB0.87530.21160.16410.098 (12)*
H1WB0.53630.52770.24310.075 (10)*
H3WA0.93220.19240.25110.097 (12)*
H4A0.2990 (4)0.5379 (3)0.00539 (10)0.061 (8)*
H1WA0.48040.50580.15630.086 (11)*
H2WA0.58340.21570.27100.114 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0338 (2)0.03079 (19)0.02409 (19)0.00292 (12)0.00414 (13)0.00169 (11)
O4W0.0477 (9)0.0535 (9)0.0323 (8)0.0134 (8)0.0067 (7)0.0077 (7)
O60.0439 (8)0.0385 (8)0.0290 (7)0.0167 (7)0.0068 (6)0.0067 (6)
N20.0363 (10)0.0348 (9)0.0263 (9)0.0097 (7)0.0055 (7)0.0003 (7)
O50.0692 (12)0.0565 (10)0.0254 (8)0.0264 (8)0.0061 (8)0.0029 (7)
O40.0569 (10)0.0485 (9)0.0370 (9)0.0288 (8)0.0014 (7)0.0031 (7)
N10.0334 (9)0.0325 (8)0.0268 (8)0.0077 (7)0.0071 (7)0.0021 (7)
C140.0342 (11)0.0320 (10)0.0296 (10)0.0048 (8)0.0077 (8)0.0014 (8)
O30.0746 (12)0.0654 (10)0.0304 (8)0.0439 (9)0.0168 (8)0.0058 (7)
O3W0.0617 (11)0.0620 (10)0.0317 (8)0.0259 (9)0.0098 (7)0.0018 (8)
O2W0.0654 (11)0.0650 (10)0.0335 (9)0.0240 (9)0.0169 (8)0.0025 (8)
C130.0340 (11)0.0304 (10)0.0257 (10)0.0044 (8)0.0090 (8)0.0002 (8)
C120.0350 (11)0.0325 (10)0.0298 (11)0.0088 (8)0.0047 (8)0.0017 (8)
C110.0301 (10)0.0316 (10)0.0255 (10)0.0039 (8)0.0069 (8)0.0021 (8)
C100.0328 (10)0.0314 (9)0.0286 (10)0.0076 (8)0.0078 (8)0.0003 (8)
C90.0342 (11)0.0334 (10)0.0335 (11)0.0099 (9)0.0052 (9)0.0013 (8)
C80.0374 (11)0.0445 (12)0.0273 (10)0.0089 (9)0.0051 (9)0.0056 (9)
O1W0.0627 (12)0.0665 (11)0.0470 (10)0.0277 (10)0.0096 (9)0.0223 (9)
C70.0291 (10)0.0322 (10)0.0305 (10)0.0072 (8)0.0068 (8)0.0027 (8)
C60.0403 (11)0.0402 (11)0.0240 (10)0.0123 (9)0.0020 (8)0.0015 (8)
C50.0421 (12)0.0397 (11)0.0304 (11)0.0144 (9)0.0123 (9)0.0021 (9)
C30.0440 (13)0.0483 (13)0.0245 (10)0.0154 (10)0.0014 (10)0.0002 (9)
C20.0463 (13)0.0512 (13)0.0243 (10)0.0171 (11)0.0069 (9)0.0051 (9)
C10.0579 (15)0.0576 (14)0.0259 (11)0.0252 (12)0.0126 (10)0.0005 (10)
C40.0463 (13)0.0428 (12)0.0334 (11)0.0167 (10)0.0044 (10)0.0040 (9)
O20.0531 (10)0.0464 (9)0.0375 (8)0.0238 (8)0.0039 (7)0.0087 (7)
O10.0855 (14)0.0753 (12)0.0312 (9)0.0476 (11)0.0025 (9)0.0096 (8)
Geometric parameters (Å, º) top
Mn1—O3W2.1380 (15)C13—C71.390 (3)
Mn1—O1W2.1588 (16)C13—H13A0.86 (2)
Mn1—O4W2.1619 (14)C12—C61.390 (3)
Mn1—O62.1654 (14)C12—C91.402 (3)
Mn1—O2i2.1713 (15)C12—C41.495 (3)
Mn1—O2W2.2083 (15)C11—C51.408 (3)
O4W—H4WB0.8501C10—C61.384 (3)
O4W—H4WA0.8500C10—C81.401 (3)
O6—C141.278 (2)C9—C31.389 (3)
N2—N11.256 (2)C8—C31.367 (3)
N2—C101.426 (2)C8—H8A0.92 (2)
O5—C141.232 (3)O1W—H1WB0.8501
O4—C91.355 (2)O1W—H1WA0.8500
O4—H4A0.872 (3)C7—C21.391 (3)
N1—C71.424 (2)C6—H6A0.975 (4)
C14—C111.495 (3)C5—C11.395 (3)
O3—C51.351 (2)C3—H5A0.84 (3)
O3—H3A0.8418 (19)C2—C11.365 (3)
O3W—H3WB0.8502C2—H2A0.90 (3)
O3W—H3WA0.8502C1—H1A1.04 (3)
O2W—H2WB0.8501C4—O11.239 (3)
O2W—H2WA0.8500C4—O21.277 (2)
C13—C111.387 (3)O2—Mn1ii2.1713 (15)
O3W—Mn1—O1W177.68 (6)C13—C11—C5118.74 (18)
O3W—Mn1—O4W92.16 (6)C13—C11—C14120.05 (17)
O1W—Mn1—O4W90.15 (6)C5—C11—C14121.21 (17)
O3W—Mn1—O688.88 (6)C6—C10—C8118.78 (17)
O1W—Mn1—O688.80 (6)C6—C10—N2116.91 (17)
O4W—Mn1—O6178.02 (5)C8—C10—N2124.29 (17)
O3W—Mn1—O2i89.06 (7)O4—C9—C3118.19 (18)
O1W—Mn1—O2i90.90 (8)O4—C9—C12121.86 (18)
O4W—Mn1—O2i94.95 (6)C3—C9—C12119.94 (18)
O6—Mn1—O2i86.75 (6)C3—C8—C10120.11 (19)
O3W—Mn1—O2W88.16 (7)C3—C8—H8A116.1 (14)
O1W—Mn1—O2W91.84 (8)C10—C8—H8A123.6 (14)
O4W—Mn1—O2W86.06 (6)Mn1—O1W—H1WB120.4
O6—Mn1—O2W92.30 (6)Mn1—O1W—H1WA121.9
O2i—Mn1—O2W177.08 (7)H1WB—O1W—H1WA109.7
Mn1—O4W—H4WB105.1C13—C7—C2119.17 (18)
Mn1—O4W—H4WA136.0C13—C7—N1125.68 (17)
H4WB—O4W—H4WA109.7C2—C7—N1115.13 (17)
C14—O6—Mn1128.50 (12)C10—C6—C12121.88 (18)
N1—N2—C10113.58 (15)C10—C6—H6A121.9 (3)
C9—O4—H4A106.7 (2)C12—C6—H6A116.1 (3)
N2—N1—C7117.43 (15)O3—C5—C1118.21 (18)
O5—C14—O6123.82 (18)O3—C5—C11121.75 (18)
O5—C14—C11119.81 (17)C1—C5—C11120.03 (18)
O6—C14—C11116.36 (16)C8—C3—C9121.0 (2)
C5—O3—H3A99.4 (4)C8—C3—H5A120.1 (16)
Mn1—O3W—H3WB110.2C9—C3—H5A118.6 (16)
Mn1—O3W—H3WA132.8C1—C2—C7121.1 (2)
H3WB—O3W—H3WA109.6C1—C2—H2A119 (2)
Mn1—O2W—H2WB143.5C7—C2—H2A119 (2)
Mn1—O2W—H2WA94.8C2—C1—C5120.0 (2)
H2WB—O2W—H2WA109.7C2—C1—H1A120.7 (14)
C11—C13—C7121.00 (18)C5—C1—H1A118.9 (14)
C11—C13—H13A115.6 (14)O1—C4—O2123.5 (2)
C7—C13—H13A123.4 (14)O1—C4—C12120.01 (19)
C6—C12—C9118.27 (18)O2—C4—C12116.53 (18)
C6—C12—C4120.50 (18)C4—O2—Mn1ii126.99 (14)
C9—C12—C4121.20 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O1i0.851.982.728 (2)147
O4W—H4WA···N2iii0.852.243.043 (2)157
O3—H3A···O60.841.712.519 (2)161
O3W—H3WB···N1iv0.852.072.894 (2)165
O4—H4A···O20.871.732.519 (2)150
O1W—H1WB···O5iii0.851.842.688 (2)175
O3W—H3WA···O1iii0.851.832.652 (3)161
O1W—H1WA···O4v0.852.092.887 (3)155
O2W—H2WA···O50.851.852.678 (2)165
Symmetry codes: (i) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C14H8N2O6)(H2O)4]
Mr427.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.486 (2), 11.490 (3), 16.322 (4)
β (°) 106.076 (3)
V3)1709.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.31 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.80, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
8959, 3341, 2933
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.102, 1.55
No. of reflections3341
No. of parameters284
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Mn1—O3W2.1380 (15)Mn1—O62.1654 (14)
Mn1—O1W2.1588 (16)Mn1—O2i2.1713 (15)
Mn1—O4W2.1619 (14)Mn1—O2W2.2083 (15)
O3W—Mn1—O1W177.68 (6)O4W—Mn1—O2i94.95 (6)
O3W—Mn1—O4W92.16 (6)O6—Mn1—O2i86.75 (6)
O1W—Mn1—O4W90.15 (6)O3W—Mn1—O2W88.16 (7)
O3W—Mn1—O688.88 (6)O1W—Mn1—O2W91.84 (8)
O1W—Mn1—O688.80 (6)O4W—Mn1—O2W86.06 (6)
O4W—Mn1—O6178.02 (5)O6—Mn1—O2W92.30 (6)
O3W—Mn1—O2i89.06 (7)O2i—Mn1—O2W177.08 (7)
O1W—Mn1—O2i90.90 (8)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O1i0.851.982.728 (2)147
O4W—H4WA···N2ii0.852.243.043 (2)157
O3—H3A···O60.841.712.519 (2)161
O3W—H3WB···N1iii0.852.072.894 (2)165
O4—H4A···O20.871.732.519 (2)150
O1W—H1WB···O5ii0.851.842.688 (2)175
O3W—H3WA···O1ii0.851.832.652 (3)161
O1W—H1WA···O4iv0.852.092.887 (3)155
O2W—H2WA···O50.851.852.678 (2)165
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds