Download citation
Download citation
link to html
In the title compound, C23H16Br2N2O2, intra­molecular C—H...Br and C—H...N hydrogen bonds from the quinoline fragment form two five-membered rings. The quinoline ring system makes dihedral angles of 81.6 (2) and 31.2 (2)° with the phenyl rings of the diphenyl­acetamide fragment. In the crystal structure, mol­ecules are linked into chains along the b axis by inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705369X/sj2391sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705369X/sj2391Isup2.hkl
Contains datablock I

CCDC reference: 672799

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.050
  • wR factor = 0.110
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br2 .. 3.55 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

8-Hydroxyquinoline and its derivatives have found extensive applications as analytical reagents, e.g. in absorption spectrophotometry, fluorimetry, solvent extraction and partition chromatography, due to their ability to form stable complexes with many metallic ions (Bratzel et al., 1972). Some 8-hydroxyquinoline derivatives and their complexes with transition metals demonstrate antibacterial activity (Patel & Patel, 1999). Recently, structures of unsubstituted 8-hydroxyquinolinate amide-type compounds, namely, N-phenyl-2-(quinolin-8-yloxy)acetamide, (II) (Li et al., 2005) and N,N-diphenyl-2-(quinolin-8-yloxy)acetamide, (III) (Wen et al., 2005) have been reported. In a continuation of our search for suitable reagents to use in the extraction of metal ions, fluorescent materials and analytical reagents, we prepared the title compound, (I) (Fig. 1), a new amide-based 5,7-dibromo-8-hydroxyquinoline derivative, and we report its crystal structure here.

In the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). The quinoline fragment is essentially planar, with a dihedral angle of 2.0 (3)° between the benzene (C1–C4/C8/C9) ring and pyridine (N1/C4–C8) ring. The quinoline mean plane makes dihedral angles of 81.6 (2)° and 31.2 (2)°, with C12–C17 and C18–C23 benzene rings, respectively, while the dihedral angle between the latter two aromatic rings is 82.4 (3)°. Intramolecular C5—H5A···Br2 and C10—H10A···N1 hydrogen bonds (Fig.1 and Table 1), form two five-numbered rings and affect the conformation of the molecule.

In the crystal structure, molecules are linked into chains along the b axis (Fig. 2) by intermolecular C16—H16A···O2 and C19—H19A···O2 hydrogen bonds(Fig. 2 and Table 1).

Related literature top

For background to the applications of 8-hydroxyquinoline and its derivatives, see: Bratzel et al. (1972); Patel & Patel (1999). For structures of unsubstituted 8-hydroxyquinolinate amide compounds, see: Li et al. (2005); Wen et al. (2005). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Chloro-N,N-diphenylacetamide was prepared by the reaction of diphenylamine and chloroacetyl chloride in the presence of triethylamine, according to the literature method of Wen et al. (2005). To a solution of 5,7-dibromo-8-hydroxyquinoline (3.02 g, 10 mmol) in acetone (60 ml) were added 2-chloro-N,N-diphenylacetamide (2.45 g,10 mmol), K2CO3 (1.52 g, 11 mmol) and KI (0.5 g), and the resulting mixture was stirred at 333 K for 5 h. After cooling to room temperature, the mixture was washed three times with water and filtered. Colourless single crystals of (I) suitable for an X-ray diffraction study were obtained by slow evaporation of an ethanol-DMF (1:1 v/v) solution over a period of 15 d.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the c axis. Hydrogen bonds are indicated by dashed lines.
2-(5,7-Dibromoquinolin-8-yloxy)-N,N-diphenylacetamide top
Crystal data top
C23H16Br2N2O2F(000) = 1016
Mr = 512.18Dx = 1.670 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1172 reflections
a = 10.1223 (12) Åθ = 2.9–20.3°
b = 9.6013 (11) ŵ = 4.00 mm1
c = 21.003 (3) ÅT = 293 K
β = 93.826 (2)°Block, colourless
V = 2036.7 (4) Å30.17 × 0.13 × 0.10 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3731 independent reflections
Radiation source: fine-focus sealed tube2346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.33 pixels mm-1θmax = 25.4°, θmin = 1.9°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 711
Tmin = 0.549, Tmax = 0.690l = 2525
10474 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0474P)2]
where P = (Fo2 + 2Fc2)/3
3731 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C23H16Br2N2O2V = 2036.7 (4) Å3
Mr = 512.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1223 (12) ŵ = 4.00 mm1
b = 9.6013 (11) ÅT = 293 K
c = 21.003 (3) Å0.17 × 0.13 × 0.10 mm
β = 93.826 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3731 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2346 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.690Rint = 0.066
10474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.96Δρmax = 0.92 e Å3
3731 reflectionsΔρmin = 0.57 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32777 (6)0.08638 (7)0.20333 (3)0.0431 (2)
Br20.07694 (6)0.48192 (6)0.17923 (3)0.0484 (2)
O10.2377 (3)0.0119 (4)0.06982 (16)0.0322 (9)
N20.3683 (4)0.1452 (4)0.07504 (19)0.0279 (10)
C110.3618 (5)0.1175 (6)0.0113 (2)0.0292 (13)
C90.1699 (5)0.1282 (6)0.0876 (2)0.0297 (13)
C190.3447 (5)0.0735 (6)0.1338 (2)0.0352 (14)
H19A0.41550.11020.10870.042*
C100.2784 (5)0.0065 (5)0.0065 (2)0.0308 (13)
H10A0.20120.01440.02320.037*
H10B0.32970.09150.00420.037*
O20.4198 (4)0.1870 (4)0.03023 (17)0.0381 (10)
C20.1211 (5)0.2776 (5)0.1766 (3)0.0344 (14)
H2A0.13880.30340.21900.041*
C10.1932 (5)0.1694 (5)0.1497 (2)0.0295 (13)
C180.3034 (5)0.0620 (6)0.1244 (2)0.0274 (13)
C120.4366 (5)0.2706 (5)0.0935 (2)0.0267 (12)
C80.0732 (5)0.2001 (6)0.0481 (3)0.0296 (13)
C40.0027 (5)0.3077 (6)0.0750 (3)0.0339 (13)
N10.0543 (5)0.1642 (5)0.0144 (2)0.0392 (12)
C30.0256 (5)0.3436 (5)0.1397 (3)0.0350 (14)
C230.1990 (5)0.1175 (6)0.1627 (3)0.0372 (14)
H23A0.17190.20880.15670.045*
C200.2799 (6)0.1541 (6)0.1809 (3)0.0414 (15)
H20A0.30700.24540.18730.050*
C130.5378 (5)0.2598 (6)0.1340 (3)0.0381 (15)
H13A0.56250.17340.14930.046*
C160.4666 (7)0.5170 (6)0.0880 (3)0.0561 (19)
H16A0.44210.60350.07270.067*
C50.1016 (5)0.3726 (6)0.0342 (3)0.0451 (16)
H5A0.15440.44200.05010.054*
C70.0373 (6)0.2291 (7)0.0504 (3)0.0487 (17)
H7A0.04860.20460.09320.058*
C170.4011 (6)0.3991 (6)0.0702 (3)0.0418 (15)
H17A0.33330.40580.04260.050*
C60.1195 (6)0.3344 (7)0.0274 (3)0.0497 (17)
H6A0.18460.37640.05430.060*
C140.6021 (6)0.3799 (8)0.1516 (3)0.0540 (19)
H14A0.66950.37430.17950.065*
C150.5668 (7)0.5078 (7)0.1280 (3)0.0539 (19)
H15A0.61150.58770.13930.065*
C210.1755 (6)0.0993 (7)0.2184 (3)0.0440 (16)
H21A0.13180.15420.24960.053*
C220.1357 (6)0.0358 (7)0.2099 (3)0.0438 (16)
H22A0.06610.07250.23580.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0501 (4)0.0464 (4)0.0326 (3)0.0204 (3)0.0024 (3)0.0026 (3)
Br20.0444 (4)0.0339 (4)0.0667 (5)0.0125 (3)0.0013 (3)0.0111 (3)
O10.044 (2)0.022 (2)0.031 (2)0.0046 (18)0.0090 (18)0.0023 (17)
N20.038 (3)0.020 (2)0.025 (2)0.003 (2)0.000 (2)0.000 (2)
C110.034 (3)0.027 (3)0.026 (3)0.002 (3)0.001 (3)0.002 (3)
C90.032 (3)0.025 (3)0.033 (3)0.000 (3)0.005 (3)0.003 (3)
C190.043 (3)0.026 (3)0.037 (3)0.003 (3)0.005 (3)0.002 (3)
C100.042 (3)0.024 (3)0.027 (3)0.002 (3)0.010 (3)0.000 (2)
O20.051 (2)0.032 (2)0.031 (2)0.009 (2)0.0028 (19)0.0022 (19)
C20.039 (3)0.025 (3)0.041 (3)0.000 (3)0.008 (3)0.002 (3)
C10.036 (3)0.022 (3)0.031 (3)0.003 (3)0.003 (2)0.008 (2)
C180.033 (3)0.027 (3)0.022 (3)0.006 (3)0.003 (2)0.002 (2)
C120.028 (3)0.021 (3)0.030 (3)0.006 (3)0.004 (2)0.003 (2)
C80.025 (3)0.026 (3)0.037 (3)0.009 (3)0.001 (2)0.007 (3)
C40.028 (3)0.028 (3)0.046 (4)0.002 (3)0.000 (3)0.002 (3)
N10.046 (3)0.034 (3)0.036 (3)0.002 (3)0.006 (2)0.002 (2)
C30.030 (3)0.020 (3)0.055 (4)0.001 (3)0.008 (3)0.002 (3)
C230.044 (3)0.027 (3)0.041 (3)0.001 (3)0.006 (3)0.003 (3)
C200.053 (4)0.028 (3)0.044 (4)0.008 (3)0.012 (3)0.014 (3)
C130.034 (3)0.045 (4)0.036 (3)0.001 (3)0.005 (3)0.003 (3)
C160.086 (5)0.018 (3)0.062 (5)0.008 (4)0.013 (4)0.003 (3)
C50.040 (4)0.037 (4)0.057 (4)0.004 (3)0.008 (3)0.006 (3)
C70.048 (4)0.046 (4)0.050 (4)0.015 (4)0.007 (3)0.008 (3)
C170.047 (4)0.028 (3)0.051 (4)0.006 (3)0.005 (3)0.003 (3)
C60.044 (4)0.047 (4)0.055 (4)0.001 (3)0.014 (3)0.015 (4)
C140.048 (4)0.072 (5)0.043 (4)0.027 (4)0.006 (3)0.007 (4)
C150.072 (5)0.042 (4)0.045 (4)0.030 (4)0.023 (4)0.018 (3)
C210.048 (4)0.045 (4)0.040 (4)0.017 (3)0.005 (3)0.004 (3)
C220.039 (4)0.049 (4)0.041 (4)0.001 (3)0.012 (3)0.015 (3)
Geometric parameters (Å, º) top
Br1—C11.885 (5)C4—C31.413 (7)
Br2—C31.909 (5)C4—C51.419 (7)
O1—C91.376 (6)N1—C71.314 (7)
O1—C101.429 (5)C23—C221.387 (8)
N2—C111.370 (6)C23—H23A0.9300
N2—C181.433 (6)C20—C211.379 (8)
N2—C121.453 (6)C20—H20A0.9300
C11—O21.218 (6)C13—C141.386 (8)
C11—C101.521 (7)C13—H13A0.9300
C9—C11.369 (7)C16—C151.362 (9)
C9—C81.420 (7)C16—C171.376 (8)
C19—C181.385 (7)C16—H16A0.9300
C19—C201.386 (7)C5—C61.345 (8)
C19—H19A0.9300C5—H5A0.9300
C10—H10A0.9700C7—C61.415 (8)
C10—H10B0.9700C7—H7A0.9300
C2—C31.355 (7)C17—H17A0.9300
C2—C11.410 (7)C6—H6A0.9300
C2—H2A0.9300C14—C151.380 (9)
C18—C231.391 (7)C14—H14A0.9300
C12—C131.379 (7)C15—H15A0.9300
C12—C171.383 (7)C21—C221.373 (8)
C8—N11.358 (6)C21—H21A0.9300
C8—C41.426 (7)C22—H22A0.9300
C9—O1—C10122.2 (4)C2—C3—Br2117.7 (4)
C11—N2—C18123.3 (4)C4—C3—Br2120.5 (4)
C11—N2—C12118.4 (4)C22—C23—C18119.6 (5)
C18—N2—C12118.2 (4)C22—C23—H23A120.2
O2—C11—N2122.8 (5)C18—C23—H23A120.2
O2—C11—C10120.1 (5)C21—C20—C19120.1 (6)
N2—C11—C10117.1 (5)C21—C20—H20A119.9
C1—C9—O1115.8 (5)C19—C20—H20A119.9
C1—C9—C8119.0 (5)C12—C13—C14119.0 (6)
O1—C9—C8125.0 (5)C12—C13—H13A120.5
C18—C19—C20119.6 (5)C14—C13—H13A120.5
C18—C19—H19A120.2C15—C16—C17120.4 (6)
C20—C19—H19A120.2C15—C16—H16A119.8
O1—C10—C11109.4 (4)C17—C16—H16A119.8
O1—C10—H10A109.8C6—C5—C4120.4 (6)
C11—C10—H10A109.8C6—C5—H5A119.8
O1—C10—H10B109.8C4—C5—H5A119.8
C11—C10—H10B109.8N1—C7—C6123.5 (6)
H10A—C10—H10B108.2N1—C7—H7A118.3
C3—C2—C1119.0 (5)C6—C7—H7A118.3
C3—C2—H2A120.5C16—C17—C12119.8 (6)
C1—C2—H2A120.5C16—C17—H17A120.1
C9—C1—C2122.3 (5)C12—C17—H17A120.1
C9—C1—Br1121.3 (4)C5—C6—C7118.5 (6)
C2—C1—Br1116.4 (4)C5—C6—H6A120.7
C19—C18—C23120.1 (5)C7—C6—H6A120.7
C19—C18—N2120.0 (5)C15—C14—C13120.4 (6)
C23—C18—N2119.9 (5)C15—C14—H14A119.8
C13—C12—C17120.4 (5)C13—C14—H14A119.8
C13—C12—N2119.3 (5)C16—C15—C14120.0 (6)
C17—C12—N2120.3 (5)C16—C15—H15A120.0
N1—C8—C9119.2 (5)C14—C15—H15A120.0
N1—C8—C4121.5 (5)C22—C21—C20120.5 (6)
C9—C8—C4119.3 (5)C22—C21—H21A119.8
C3—C4—C5124.3 (5)C20—C21—H21A119.8
C3—C4—C8118.6 (5)C21—C22—C23120.1 (5)
C5—C4—C8117.1 (5)C21—C22—H22A120.0
C7—N1—C8119.0 (5)C23—C22—H22A120.0
C2—C3—C4121.8 (5)
C18—N2—C11—O2178.2 (5)C9—C8—C4—C33.0 (7)
C12—N2—C11—O26.1 (7)N1—C8—C4—C51.9 (8)
C18—N2—C11—C101.4 (7)C9—C8—C4—C5177.6 (5)
C12—N2—C11—C10174.2 (4)C9—C8—N1—C7178.6 (5)
C10—O1—C9—C1148.4 (5)C4—C8—N1—C70.9 (8)
C10—O1—C9—C836.2 (7)C1—C2—C3—C40.6 (8)
C9—O1—C10—C1155.7 (6)C1—C2—C3—Br2176.3 (4)
O2—C11—C10—O124.0 (7)C5—C4—C3—C2179.8 (5)
N2—C11—C10—O1156.3 (4)C8—C4—C3—C20.8 (8)
O1—C9—C1—C2173.3 (4)C5—C4—C3—Br22.9 (7)
C8—C9—C1—C22.4 (8)C8—C4—C3—Br2177.7 (4)
O1—C9—C1—Br18.4 (7)C19—C18—C23—C220.8 (8)
C8—C9—C1—Br1175.9 (4)N2—C18—C23—C22179.2 (5)
C3—C2—C1—C90.2 (8)C18—C19—C20—C210.4 (8)
C3—C2—C1—Br1178.2 (4)C17—C12—C13—C140.8 (8)
C20—C19—C18—C231.1 (8)N2—C12—C13—C14179.7 (5)
C20—C19—C18—N2178.9 (5)C3—C4—C5—C6178.2 (5)
C11—N2—C18—C1967.1 (7)C8—C4—C5—C61.2 (8)
C12—N2—C18—C19117.3 (5)C8—N1—C7—C60.8 (8)
C11—N2—C18—C23112.9 (6)C15—C16—C17—C120.6 (9)
C12—N2—C18—C2362.7 (6)C13—C12—C17—C160.5 (8)
C11—N2—C12—C13125.1 (5)N2—C12—C17—C16180.0 (5)
C18—N2—C12—C1359.0 (6)C4—C5—C6—C70.4 (9)
C11—N2—C12—C1754.4 (7)N1—C7—C6—C51.5 (9)
C18—N2—C12—C17121.5 (5)C12—C13—C14—C151.1 (9)
C1—C9—C8—N1176.8 (5)C17—C16—C15—C141.0 (9)
O1—C9—C8—N18.0 (8)C13—C14—C15—C161.2 (9)
C1—C9—C8—C43.7 (7)C19—C20—C21—C220.7 (8)
O1—C9—C8—C4171.5 (5)C20—C21—C22—C231.0 (9)
N1—C8—C4—C3177.5 (5)C18—C23—C22—C210.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Br20.932.803.216 (6)108
C10—H10A···N10.972.292.809 (7)113
C16—H16A···O2i0.932.583.269 (7)132
C19—H19A···O2ii0.932.383.303 (6)171
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H16Br2N2O2
Mr512.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.1223 (12), 9.6013 (11), 21.003 (3)
β (°) 93.826 (2)
V3)2036.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.00
Crystal size (mm)0.17 × 0.13 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.549, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
10474, 3731, 2346
Rint0.066
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.110, 0.96
No. of reflections3731
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.57

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Br20.932.7993.216 (6)108.39
C10—H10A···N10.972.2852.809 (7)112.96
C16—H16A···O2i0.932.5753.269 (7)131.77
C19—H19A···O2ii0.932.3823.303 (6)170.64
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds