organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Gibberellin A4 monohydrate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 9 November 2007; accepted 19 November 2007; online 6 December 2007)

The title compond, C19H24O5·H2O, has two gibberellin A4 mol­ecules and two water mol­ecules in the asymmetric unit. The A and B rings have chair conformations, whereas the C and D rings have envelope conformations; the two rings which contain the lactone and carbonyl bridge adopt chair and envelope conformations. The crystal structure is established by O—H⋯O hydrogen bonds and supported by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Coggins et al. (1969[Coggins, C. W., Scora, R. W., Lewis, L. N. & Knapp, J. C. F. (1969). J. Agric. Food Chem. 17, 805-806.]); Ellames et al. (1979[Ellames, G., Hanson, J. R., Hitchcock, P. B. & Thomas, S. A. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 1922-1926.]); Hossain et al. (1988[Hossain, M. B., van der Helm, D., Sanduja, R. & Alam, M. (1988). Acta Cryst. C44, 1022-1024.]); Komoda et al. (1968[Komoda, Y., Isogai, Y. & Okamoto, T. (1968). Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 18, 221-223.]); Kutschabsky & Adam (1983[Kutschabsky, L. & Adam, G. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1653-1655.]); Thompson et al. (2000[Thompson, H. W., Brunskill, A. P. J. & Lalancette, R. A. (2000). Acta Cryst. C56, 1507-1509.]); Furber et al. (1992[Furber, M., Mander, L. N., Patrick, G. L. & Willis, A. C. (1992). Acta Cryst. C48, 1348-1350.]); Nagata et al. (1971[Nagata, W., Wakabayashi, T., Narisada, M., Hayase, Y. & Kamata, S. (1971). J. Am. Chem. Soc. 93, 5740-5758.]); Poling (1991[Poling, S. M. (1991). J. Agric. Food Chem. 39, 677-680.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24O5·H2O

  • Mr = 350.40

  • Monoclinic, P 21

  • a = 9.6466 (13) Å

  • b = 18.968 (3) Å

  • c = 9.4910 (12) Å

  • β = 89.989 (3)°

  • V = 1736.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 193 (2) K

  • 0.44 × 0.35 × 0.19 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (SHELXTL; Siemens, 1998[Siemens (1998). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.981

  • 17165 measured reflections

  • 3281 independent reflections

  • 3080 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.207

  • S = 1.13

  • 3281 reflections

  • 475 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O11i 0.84 2.01 2.825 (8) 163 (4)
O4—H4⋯O6ii 0.84 1.83 2.634 (8) 158 (6)
O6—H6WA⋯O8iii 0.82 (5) 2.15 (6) 2.939 (9) 161 (6)
O6—H6WB⋯O4iv 0.82 (5) 1.93 (13) 2.634 (9) 143 (6)
O10—H10⋯O12 0.83 (7) 1.81 (6) 2.625 (8) 163 (4)
O12—H12A⋯O2 0.82 (9) 2.16 (11) 2.925 (10) 154 (10)
O12—H12B⋯O9iv 0.82 (9) 1.91 (6) 2.727 (10) 167 (2)
C11—H11⋯O8 1.00 2.54 3.531 (10) 173 (7)
C30—H30⋯O2v 1.00 2.46 3.442 (9) 166 (7)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z+1; (iii) x-1, y, z-1; (iv) x, y, z-1; (v) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Siemens, 1998[Siemens (1998). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The gibberellins are an important family of diterpenoid plant-growth factors. It is used mainly to improve the rind quality of fruit (Coggins et al., 1969; Poling, 1991). Some crystal sructures of gibberellins are reported previously, such as gibberellin A20 (Komoda et al., 1968), gibberellin A4 trmethyl ester (Ellames et al., 1979), gibberellin A3 (Kutschabsky & Adam, 1983), 3-O-acetylgiberellin A3 (Hossain et al., 1988), gibberellin C (Thompson et al., 2000), 15-crclogibberellin A9 (Furber et al., 1992), and gibberellin A15 (Nagata et al., 1971). We present here the structure of the title compound, (I).

As shown in Fig. 1, there are two crystallographically independent (I) in the asymmeytric unit cell. The H atom at C2 and C8, the methylat C3, the hdroxyl at C5, the methano (C15) bridge and the carboxyl, all lie on the 'upper' β face of the molecule, and the C=O group also toward the β face. Only the bridge that links the lactone and carbonyl has α stereochemistry. The A ring and the B ring have chair conformations, whereas the C ring and D ring have the envelope conformations, besides those, the two rings which contain the lactone and carbonyl bridge adopt chair and envelope conformations respectively. The H atom of axial hydroxyl group (O10) is aimed away from the ring system toward a water molecule, and the water (O12) hydrogen-bonding relates to the lactone carbonyl (O2). There exists two counter-directional screw-related sets of helices, the hydroxyl and lactone carbonyl in related molecules within a given helix are involved in hydrogen bonds from a single water of hydration (O12—H12A···O2 and O12—H12B···O9), in turn, the oxygen (O12) of the same water accepts a hydrogen bond from the carboxyl group of a third screw-related molecule in an adjacent counter-directionally oriented helix (O10—H10···O12). Thus, water molecule acts both to brace the helix and to bridge it, alternately, to two different screw-related neighboring chains in a complex three-dimensional array.

The water molecules are linked to the GA4 molecules by O—H···O hydrogen bonds (Table 2), more over, weak C—H···O hydrogen bonds are obeserved between the gibberellin molecules to help increasing the stalitiy of the crystal (Fig. 2 & Table 2).

Related literature top

For related literature, see: Coggins et al. (1969); Ellames et al. (1979); Hossain et al. (1988); Komoda et al. (1968); Kutschabsky & Adam (1983); Thompson et al. (2000); Furber et al. (1992); Nagata et al. (1971); Poling (1991).

Experimental top

Gibberellin A4 (1 mmol, 0.33 g) was dissolved with 10 ml tetrahydrofuran and water (1:1) admixture, then heated to boiling and stirred for ten minutes. The resulting solution was cooled to the room temperature and the colorless crystals were collected after five days.

Refinement top

The H atoms attaching to O atoms and the H atoms of water were deduced from difference Fourier maps, and incorporated in refinement. Others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.98 (methyl), 0.99 (methylene), 1.00Å (methine), with Uiso(H) values 1.2 times Ueq of the parent atoms. Because of the lack of atoms heavier than oxygen and the short measuring wavelength of Mo radiation, no useful absolute structure parameter could be refined.

Structure description top

The gibberellins are an important family of diterpenoid plant-growth factors. It is used mainly to improve the rind quality of fruit (Coggins et al., 1969; Poling, 1991). Some crystal sructures of gibberellins are reported previously, such as gibberellin A20 (Komoda et al., 1968), gibberellin A4 trmethyl ester (Ellames et al., 1979), gibberellin A3 (Kutschabsky & Adam, 1983), 3-O-acetylgiberellin A3 (Hossain et al., 1988), gibberellin C (Thompson et al., 2000), 15-crclogibberellin A9 (Furber et al., 1992), and gibberellin A15 (Nagata et al., 1971). We present here the structure of the title compound, (I).

As shown in Fig. 1, there are two crystallographically independent (I) in the asymmeytric unit cell. The H atom at C2 and C8, the methylat C3, the hdroxyl at C5, the methano (C15) bridge and the carboxyl, all lie on the 'upper' β face of the molecule, and the C=O group also toward the β face. Only the bridge that links the lactone and carbonyl has α stereochemistry. The A ring and the B ring have chair conformations, whereas the C ring and D ring have the envelope conformations, besides those, the two rings which contain the lactone and carbonyl bridge adopt chair and envelope conformations respectively. The H atom of axial hydroxyl group (O10) is aimed away from the ring system toward a water molecule, and the water (O12) hydrogen-bonding relates to the lactone carbonyl (O2). There exists two counter-directional screw-related sets of helices, the hydroxyl and lactone carbonyl in related molecules within a given helix are involved in hydrogen bonds from a single water of hydration (O12—H12A···O2 and O12—H12B···O9), in turn, the oxygen (O12) of the same water accepts a hydrogen bond from the carboxyl group of a third screw-related molecule in an adjacent counter-directionally oriented helix (O10—H10···O12). Thus, water molecule acts both to brace the helix and to bridge it, alternately, to two different screw-related neighboring chains in a complex three-dimensional array.

The water molecules are linked to the GA4 molecules by O—H···O hydrogen bonds (Table 2), more over, weak C—H···O hydrogen bonds are obeserved between the gibberellin molecules to help increasing the stalitiy of the crystal (Fig. 2 & Table 2).

For related literature, see: Coggins et al. (1969); Ellames et al. (1979); Hossain et al. (1988); Komoda et al. (1968); Kutschabsky & Adam (1983); Thompson et al. (2000); Furber et al. (1992); Nagata et al. (1971); Poling (1991).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1998); software used to prepare material for publication: SHELXTL (Siemens, 1998).

Figures top
[Figure 1] Fig. 1. The cell unit of (I) with atom labels, showing 40% probability displacement ellipsoids. The thin lines denote the hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down along the c axis, hydrogen bonds shown as thin lines.
Gibberellin A4 monohydrate top
Crystal data top
C19H24O5·H2OF(000) = 752
Mr = 350.40Dx = 1.340 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 6798 reflections
a = 9.6466 (13) Åθ = 3.0–25.3°
b = 18.968 (3) ŵ = 0.10 mm1
c = 9.4910 (12) ÅT = 193 K
β = 89.989 (3)°Prism, colourless
V = 1736.6 (4) Å30.44 × 0.35 × 0.19 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
3281 independent reflections
Radiation source: fine-focus sealed tube3080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SHELXTL; Siemens, 1998)
h = 1111
Tmin = 0.958, Tmax = 0.981k = 2022
17165 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0724P)2 + 5.3874P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3281 reflectionsΔρmax = 0.38 e Å3
475 parametersΔρmin = 0.38 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (4)
Crystal data top
C19H24O5·H2OV = 1736.6 (4) Å3
Mr = 350.40Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.6466 (13) ŵ = 0.10 mm1
b = 18.968 (3) ÅT = 193 K
c = 9.4910 (12) Å0.44 × 0.35 × 0.19 mm
β = 89.989 (3)°
Data collection top
Rigaku Mercury
diffractometer
3281 independent reflections
Absorption correction: multi-scan
(SHELXTL; Siemens, 1998)
3080 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.981Rint = 0.047
17165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0777 restraints
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.38 e Å3
3281 reflectionsΔρmin = 0.38 e Å3
475 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4911 (5)0.4162 (3)0.4548 (5)0.0302 (12)
O20.3349 (6)0.3352 (3)0.3931 (6)0.0342 (13)
O30.2111 (6)0.5532 (3)0.2383 (7)0.0401 (14)
H30.26150.58510.20430.060*
O40.1765 (6)0.4775 (3)0.8495 (6)0.0346 (13)
H40.11070.49640.89360.052*
O50.1604 (6)0.5757 (3)0.7208 (6)0.0376 (13)
O60.0054 (6)0.5236 (3)0.0452 (6)0.0377 (14)
O70.9843 (5)0.3447 (3)1.1202 (6)0.0308 (12)
O80.8233 (6)0.4220 (3)1.1879 (6)0.0385 (14)
O90.7109 (6)0.2016 (3)1.3376 (6)0.0392 (14)
H90.72740.18351.41660.059*
O100.6679 (6)0.2784 (3)0.7237 (6)0.0396 (14)
H100.61430.25480.67220.059*
O110.6654 (6)0.1799 (3)0.8549 (6)0.0371 (14)
O120.5048 (6)0.2267 (4)0.5279 (6)0.0382 (14)
C10.4931 (8)0.4951 (4)0.4695 (8)0.0287 (17)
C20.3418 (7)0.5094 (4)0.5070 (7)0.0256 (16)
H20.31550.55990.49200.031*
C30.2695 (8)0.4602 (4)0.4041 (8)0.0259 (16)
C40.3615 (8)0.3961 (4)0.4122 (8)0.0304 (17)
C50.2899 (9)0.4894 (5)0.2509 (8)0.0359 (19)
H50.25020.45420.18370.043*
C60.4416 (9)0.4998 (5)0.2134 (9)0.039 (2)
H6A0.47970.45410.18130.046*
H6B0.44720.53310.13320.046*
C70.5301 (9)0.5267 (5)0.3279 (8)0.0359 (19)
H7A0.52060.57860.33320.043*
H7B0.62820.51580.30620.043*
C80.5786 (8)0.5146 (5)0.5987 (8)0.0329 (18)
H80.60240.56580.59100.039*
C90.7138 (8)0.4740 (5)0.6141 (9)0.039 (2)
H9A0.77980.48970.54060.047*
H9B0.69600.42310.59990.047*
C100.7792 (9)0.4857 (6)0.7620 (10)0.044 (2)
H10A0.84490.44690.78230.052*
H10B0.83190.53050.76190.052*
C110.6678 (8)0.4884 (4)0.8784 (9)0.0328 (18)
H110.70370.46740.96780.039*
C120.6146 (8)0.5632 (4)0.9034 (8)0.0325 (18)
C130.4837 (8)0.5720 (4)0.8192 (8)0.0307 (17)
H13A0.48810.61500.76030.037*
H13B0.40190.57510.88190.037*
C140.4764 (8)0.5059 (4)0.7271 (8)0.0260 (16)
C150.5351 (8)0.4502 (5)0.8300 (8)0.0316 (17)
H15A0.47120.44130.90970.038*
H15B0.55630.40530.78170.038*
C160.3326 (7)0.4877 (4)0.6617 (7)0.0244 (15)
H160.32250.43530.66430.029*
C170.1175 (8)0.4436 (5)0.4304 (9)0.0368 (19)
H17A0.07940.41850.34880.055*
H17B0.06620.48760.44480.055*
H17C0.10900.41390.51450.055*
C180.6703 (11)0.6092 (6)0.9877 (12)0.054 (3)
H18A0.62750.65381.00090.064*
H18B0.75370.59821.03620.064*
C190.2140 (8)0.5185 (4)0.7452 (8)0.0267 (16)
C200.9918 (8)0.2658 (4)1.0997 (8)0.0274 (16)
C210.8411 (8)0.2487 (4)1.0648 (7)0.0253 (15)
H210.81990.19741.07710.030*
C220.7644 (8)0.2944 (4)1.1708 (8)0.0292 (17)
C230.8545 (8)0.3612 (4)1.1630 (8)0.0292 (17)
C240.7910 (10)0.2646 (4)1.3216 (9)0.0369 (19)
H240.75350.29981.39000.044*
C250.9411 (10)0.2544 (6)1.3561 (9)0.046 (2)
H25A0.97610.29901.39730.055*
H25B0.94750.21791.43020.055*
C261.0352 (10)0.2341 (5)1.2404 (9)0.039 (2)
H26A1.03660.18211.23210.047*
H26B1.13030.25001.26330.047*
C271.0758 (8)0.2501 (4)0.9691 (8)0.0271 (16)
H271.10510.19960.97530.033*
C281.2069 (8)0.2936 (5)0.9501 (9)0.0333 (18)
H28A1.18390.34420.96120.040*
H28B1.27400.28091.02480.040*
C291.2738 (8)0.2823 (5)0.8075 (9)0.0369 (19)
H29A1.33130.23910.81040.044*
H29B1.33560.32260.78620.044*
C301.1624 (8)0.2751 (5)0.6870 (8)0.0304 (17)
H301.19560.29510.59560.036*
C311.1162 (8)0.1991 (4)0.6727 (8)0.0316 (17)
C320.9801 (8)0.1890 (4)0.7541 (8)0.0285 (16)
H32A0.90000.18530.68930.034*
H32B0.98370.14650.81450.034*
C330.9726 (7)0.2559 (4)0.8422 (8)0.0245 (15)
C341.0251 (8)0.3109 (4)0.7386 (8)0.0286 (16)
H34A1.04360.35660.78560.034*
H34B0.95920.31820.66010.034*
C350.8283 (7)0.2725 (4)0.9086 (7)0.0254 (15)
H350.81380.32470.90670.031*
C360.6119 (9)0.3093 (5)1.1440 (10)0.040 (2)
H36A0.60110.33141.05140.060*
H36B0.57650.34111.21710.060*
H36C0.55980.26491.14640.060*
C371.1780 (10)0.1493 (5)0.6011 (11)0.048 (2)
H37A1.26100.15920.55100.058*
H37B1.13990.10310.59920.058*
C380.7126 (7)0.2382 (4)0.8290 (8)0.0255 (16)
H6WA0.060 (5)0.500 (3)0.074 (7)0.060 (18)*
H12B0.569 (6)0.213 (5)0.477 (7)0.04 (3)*
H12A0.441 (8)0.246 (7)0.485 (8)0.09 (5)*
H6WB0.073 (7)0.501 (4)0.017 (15)0.09 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.030 (3)0.030 (3)0.032 (3)0.003 (2)0.002 (2)0.003 (2)
O20.042 (3)0.023 (3)0.037 (3)0.004 (3)0.005 (2)0.000 (2)
O30.043 (3)0.033 (3)0.044 (3)0.000 (3)0.005 (3)0.003 (3)
O40.040 (3)0.030 (3)0.034 (3)0.004 (2)0.007 (2)0.004 (2)
O50.038 (3)0.030 (3)0.045 (3)0.001 (3)0.008 (3)0.006 (3)
O60.027 (3)0.048 (4)0.038 (3)0.000 (3)0.003 (3)0.003 (3)
O70.031 (3)0.026 (3)0.035 (3)0.006 (2)0.000 (2)0.002 (2)
O80.051 (4)0.024 (3)0.040 (3)0.004 (3)0.003 (3)0.001 (2)
O90.043 (3)0.032 (3)0.043 (3)0.002 (3)0.008 (3)0.002 (3)
O100.039 (3)0.040 (3)0.041 (3)0.003 (3)0.006 (3)0.001 (3)
O110.039 (3)0.028 (3)0.045 (3)0.006 (3)0.000 (3)0.000 (3)
O120.028 (3)0.049 (4)0.038 (3)0.001 (3)0.003 (3)0.001 (3)
C10.038 (4)0.021 (4)0.027 (4)0.001 (3)0.001 (3)0.002 (3)
C20.028 (4)0.024 (4)0.026 (4)0.004 (3)0.001 (3)0.001 (3)
C30.029 (4)0.024 (4)0.024 (4)0.002 (3)0.002 (3)0.000 (3)
C40.033 (4)0.035 (5)0.023 (4)0.007 (3)0.000 (3)0.003 (3)
C50.045 (5)0.037 (5)0.026 (4)0.005 (4)0.001 (3)0.001 (3)
C60.048 (5)0.036 (5)0.032 (4)0.012 (4)0.011 (4)0.012 (4)
C70.037 (5)0.042 (5)0.029 (4)0.000 (4)0.004 (3)0.001 (4)
C80.030 (4)0.038 (4)0.030 (4)0.006 (3)0.004 (3)0.001 (3)
C90.028 (4)0.050 (6)0.038 (5)0.003 (4)0.001 (3)0.008 (4)
C100.026 (4)0.051 (5)0.055 (5)0.004 (4)0.017 (4)0.011 (5)
C110.038 (4)0.027 (4)0.034 (4)0.001 (3)0.010 (3)0.004 (3)
C120.036 (4)0.032 (4)0.029 (4)0.007 (4)0.000 (3)0.000 (3)
C130.038 (4)0.026 (4)0.029 (4)0.006 (3)0.003 (3)0.001 (3)
C140.026 (4)0.024 (4)0.028 (4)0.002 (3)0.001 (3)0.001 (3)
C150.030 (4)0.032 (4)0.033 (4)0.003 (3)0.000 (3)0.006 (3)
C160.027 (4)0.023 (4)0.023 (3)0.010 (3)0.005 (3)0.002 (3)
C170.031 (4)0.042 (5)0.038 (4)0.004 (4)0.004 (3)0.004 (4)
C180.050 (6)0.042 (5)0.068 (7)0.009 (5)0.012 (5)0.011 (5)
C190.027 (4)0.026 (4)0.028 (4)0.003 (3)0.001 (3)0.001 (3)
C200.030 (4)0.026 (4)0.026 (4)0.004 (3)0.003 (3)0.001 (3)
C210.031 (4)0.022 (4)0.023 (4)0.004 (3)0.002 (3)0.002 (3)
C220.030 (4)0.027 (4)0.031 (4)0.003 (3)0.008 (3)0.002 (3)
C230.037 (4)0.028 (4)0.023 (4)0.005 (3)0.003 (3)0.004 (3)
C240.056 (5)0.026 (4)0.029 (4)0.001 (4)0.003 (4)0.005 (3)
C250.055 (6)0.056 (6)0.027 (4)0.014 (5)0.004 (4)0.010 (4)
C260.048 (5)0.038 (5)0.032 (4)0.008 (4)0.004 (4)0.006 (4)
C270.031 (4)0.023 (4)0.028 (4)0.005 (3)0.000 (3)0.001 (3)
C280.025 (4)0.038 (5)0.037 (4)0.006 (3)0.005 (3)0.003 (4)
C290.026 (4)0.036 (5)0.049 (5)0.001 (3)0.008 (3)0.002 (4)
C300.028 (4)0.036 (4)0.028 (4)0.003 (3)0.007 (3)0.003 (3)
C310.037 (4)0.025 (4)0.033 (4)0.002 (3)0.004 (3)0.002 (3)
C320.027 (4)0.024 (4)0.034 (4)0.003 (3)0.002 (3)0.002 (3)
C330.020 (3)0.026 (4)0.027 (4)0.005 (3)0.003 (3)0.000 (3)
C340.030 (4)0.020 (4)0.035 (4)0.005 (3)0.002 (3)0.002 (3)
C350.022 (3)0.027 (4)0.027 (4)0.002 (3)0.005 (3)0.003 (3)
C360.039 (5)0.039 (5)0.042 (5)0.006 (4)0.010 (4)0.006 (4)
C370.041 (5)0.039 (5)0.065 (6)0.007 (4)0.020 (5)0.009 (5)
C380.020 (3)0.029 (4)0.028 (4)0.002 (3)0.004 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C41.368 (9)C14—C161.558 (10)
O1—C11.503 (9)C15—H15A0.9900
O2—C41.198 (10)C15—H15B0.9900
O3—C51.434 (10)C16—C191.509 (10)
O3—H30.8400C16—H161.0000
O4—C191.309 (9)C17—H17A0.9800
O4—H40.8400C17—H17B0.9800
O5—C191.224 (10)C17—H17C0.9800
O6—H6WA0.82 (2)C18—H18A0.9500
O6—H6WB0.82 (2)C18—H18B0.9500
O7—C231.353 (9)C20—C271.511 (10)
O7—C201.509 (9)C20—C261.523 (11)
O8—C231.216 (9)C20—C211.526 (10)
O9—C241.432 (10)C21—C221.521 (10)
O9—H90.8400C21—C351.555 (10)
O10—C381.328 (9)C21—H211.0000
O10—H100.8400C22—C361.519 (11)
O11—C381.221 (9)C22—C231.538 (11)
O12—H12B0.83 (2)C22—C241.560 (11)
O12—H12A0.83 (2)C24—C251.497 (13)
C1—C71.514 (11)C24—H241.0000
C1—C81.523 (11)C25—C261.476 (13)
C1—C21.526 (11)C25—H25A0.9900
C2—C31.520 (10)C25—H25B0.9900
C2—C161.527 (10)C26—H26A0.9900
C2—H21.0000C26—H26B0.9900
C3—C41.508 (11)C27—C281.521 (11)
C3—C171.520 (11)C27—C331.567 (10)
C3—C51.569 (10)C27—H271.0000
C5—C61.518 (12)C28—C291.515 (11)
C5—H51.0000C28—H28A0.9900
C6—C71.473 (12)C28—H28B0.9900
C6—H6A0.9900C29—C301.576 (11)
C6—H6B0.9900C29—H29A0.9900
C7—H7A0.9900C29—H29B0.9900
C7—H7B0.9900C30—C311.514 (11)
C8—C91.521 (12)C30—C341.566 (10)
C8—C141.576 (10)C30—H301.0000
C8—H81.0000C31—C371.308 (12)
C9—C101.555 (12)C31—C321.536 (10)
C9—H9A0.9900C32—C331.521 (11)
C9—H9B0.9900C32—H32A0.9900
C10—C111.542 (13)C32—H32B0.9900
C10—H10A0.9900C33—C341.520 (10)
C10—H10B0.9900C33—C351.560 (9)
C11—C121.528 (11)C34—H34A0.9900
C11—C151.540 (11)C34—H34B0.9900
C11—H111.0000C35—C381.496 (10)
C12—C181.300 (12)C35—H351.0000
C12—C131.504 (11)C36—H36A0.9800
C13—C141.530 (11)C36—H36B0.9800
C13—H13A0.9900C36—H36C0.9800
C13—H13B0.9900C37—H37A0.9500
C14—C151.546 (10)C37—H37B0.9500
C4—O1—C1108.5 (6)H18A—C18—H18B120.0
C5—O3—H3109.5O5—C19—O4123.5 (7)
C19—O4—H4109.5O5—C19—C16124.3 (7)
H6WA—O6—H6WB116 (7)O4—C19—C16112.2 (6)
C23—O7—C20108.2 (6)O7—C20—C27109.1 (6)
C24—O9—H9109.5O7—C20—C26106.9 (6)
C38—O10—H10109.5C27—C20—C26119.6 (7)
H12B—O12—H12A114 (8)O7—C20—C21101.2 (6)
O1—C1—C7108.4 (6)C27—C20—C21106.9 (6)
O1—C1—C8108.8 (6)C26—C20—C21111.6 (6)
C7—C1—C8119.3 (7)C22—C21—C20101.5 (6)
O1—C1—C2100.8 (6)C22—C21—C35115.2 (6)
C7—C1—C2111.2 (6)C20—C21—C35102.8 (6)
C8—C1—C2106.7 (6)C22—C21—H21112.2
C3—C2—C1100.4 (6)C20—C21—H21112.2
C3—C2—C16115.2 (6)C35—C21—H21112.2
C1—C2—C16103.4 (6)C36—C22—C21117.8 (7)
C3—C2—H2112.3C36—C22—C23112.7 (7)
C1—C2—H2112.3C21—C22—C2399.4 (6)
C16—C2—H2112.3C36—C22—C24112.4 (7)
C4—C3—C2101.1 (6)C21—C22—C24108.6 (6)
C4—C3—C17113.1 (7)C23—C22—C24104.4 (6)
C2—C3—C17117.7 (6)O8—C23—O7120.5 (7)
C4—C3—C5105.0 (6)O8—C23—C22129.2 (7)
C2—C3—C5108.7 (6)O7—C23—C22110.3 (6)
C17—C3—C5110.3 (6)O9—C24—C25113.1 (7)
O2—C4—O1120.7 (7)O9—C24—C22108.1 (6)
O2—C4—C3130.1 (7)C25—C24—C22114.0 (7)
O1—C4—C3109.1 (7)O9—C24—H24107.1
O3—C5—C6112.4 (7)C25—C24—H24107.1
O3—C5—C3108.0 (6)C22—C24—H24107.1
C6—C5—C3112.6 (7)C26—C25—C24117.7 (7)
O3—C5—H5107.9C26—C25—H25A107.9
C6—C5—H5107.9C24—C25—H25A107.9
C3—C5—H5107.9C26—C25—H25B107.9
C7—C6—C5115.5 (7)C24—C25—H25B107.9
C7—C6—H6A108.4H25A—C25—H25B107.2
C5—C6—H6A108.4C25—C26—C20112.3 (7)
C7—C6—H6B108.4C25—C26—H26A109.1
C5—C6—H6B108.4C20—C26—H26A109.1
H6A—C6—H6B107.5C25—C26—H26B109.1
C6—C7—C1112.4 (7)C20—C26—H26B109.1
C6—C7—H7A109.1H26A—C26—H26B107.9
C1—C7—H7A109.1C20—C27—C28115.8 (6)
C6—C7—H7B109.1C20—C27—C33106.0 (6)
C1—C7—H7B109.1C28—C27—C33113.5 (6)
H7A—C7—H7B107.9C20—C27—H27107.0
C9—C8—C1114.8 (7)C28—C27—H27107.0
C9—C8—C14114.1 (6)C33—C27—H27107.0
C1—C8—C14104.9 (6)C29—C28—C27112.5 (7)
C9—C8—H8107.5C29—C28—H28A109.1
C1—C8—H8107.5C27—C28—H28A109.1
C14—C8—H8107.5C29—C28—H28B109.1
C8—C9—C10111.3 (7)C27—C28—H28B109.1
C8—C9—H9A109.4H28A—C28—H28B107.8
C10—C9—H9A109.4C28—C29—C30111.7 (6)
C8—C9—H9B109.4C28—C29—H29A109.3
C10—C9—H9B109.4C30—C29—H29A109.3
H9A—C9—H9B108.0C28—C29—H29B109.3
C11—C10—C9111.6 (7)C30—C29—H29B109.3
C11—C10—H10A109.3H29A—C29—H29B107.9
C9—C10—H10A109.3C31—C30—C34101.1 (6)
C11—C10—H10B109.3C31—C30—C29110.4 (7)
C9—C10—H10B109.3C34—C30—C29108.2 (6)
H10A—C10—H10B108.0C31—C30—H30112.2
C12—C11—C15101.7 (6)C34—C30—H30112.2
C12—C11—C10112.1 (7)C29—C30—H30112.2
C15—C11—C10110.5 (7)C37—C31—C30126.9 (8)
C12—C11—H11110.7C37—C31—C32124.1 (8)
C15—C11—H11110.7C30—C31—C32108.9 (6)
C10—C11—H11110.7C33—C32—C31102.3 (6)
C18—C12—C13126.8 (9)C33—C32—H32A111.3
C18—C12—C11125.5 (8)C31—C32—H32A111.3
C13—C12—C11107.6 (6)C33—C32—H32B111.3
C12—C13—C14104.6 (6)C31—C32—H32B111.3
C12—C13—H13A110.8H32A—C32—H32B109.2
C14—C13—H13A110.8C34—C33—C32101.6 (6)
C12—C13—H13B110.8C34—C33—C35114.9 (6)
C14—C13—H13B110.8C32—C33—C35115.6 (6)
H13A—C13—H13B108.9C34—C33—C27109.5 (6)
C13—C14—C15100.4 (6)C32—C33—C27109.4 (6)
C13—C14—C16116.7 (6)C35—C33—C27105.7 (6)
C15—C14—C16115.3 (6)C33—C34—C30100.7 (6)
C13—C14—C8109.1 (6)C33—C34—H34A111.6
C15—C14—C8109.3 (6)C30—C34—H34A111.6
C16—C14—C8105.8 (6)C33—C34—H34B111.6
C11—C15—C1499.9 (6)C30—C34—H34B111.6
C11—C15—H15A111.8H34A—C34—H34B109.4
C14—C15—H15A111.8C38—C35—C21114.5 (6)
C11—C15—H15B111.8C38—C35—C33112.0 (6)
C14—C15—H15B111.8C21—C35—C33104.8 (6)
H15A—C15—H15B109.5C38—C35—H35108.4
C19—C16—C2116.4 (6)C21—C35—H35108.4
C19—C16—C14112.4 (6)C33—C35—H35108.4
C2—C16—C14105.8 (6)C22—C36—H36A109.5
C19—C16—H16107.3C22—C36—H36B109.5
C2—C16—H16107.3H36A—C36—H36B109.5
C14—C16—H16107.3C22—C36—H36C109.5
C3—C17—H17A109.5H36A—C36—H36C109.5
C3—C17—H17B109.5H36B—C36—H36C109.5
H17A—C17—H17B109.5C31—C37—H37A120.0
C3—C17—H17C109.5C31—C37—H37B120.0
H17A—C17—H17C109.5H37A—C37—H37B120.0
H17B—C17—H17C109.5O11—C38—O10123.4 (7)
C12—C18—H18A120.0O11—C38—C35124.7 (7)
C12—C18—H18B120.0O10—C38—C35111.9 (6)
C4—O1—C1—C787.7 (7)C23—O7—C20—C27139.9 (6)
C4—O1—C1—C8141.1 (6)C23—O7—C20—C2689.5 (7)
C4—O1—C1—C229.1 (7)C23—O7—C20—C2127.4 (7)
O1—C1—C2—C342.7 (7)O7—C20—C21—C2242.2 (6)
C7—C1—C2—C372.0 (7)C27—C20—C21—C22156.4 (6)
C8—C1—C2—C3156.3 (6)C26—C20—C21—C2271.2 (8)
O1—C1—C2—C1676.5 (6)O7—C20—C21—C3577.2 (6)
C7—C1—C2—C16168.8 (6)C27—C20—C21—C3536.9 (7)
C8—C1—C2—C1637.1 (7)C26—C20—C21—C35169.4 (6)
C1—C2—C3—C440.9 (7)C20—C21—C22—C36162.4 (7)
C16—C2—C3—C469.3 (7)C35—C21—C22—C3652.2 (9)
C1—C2—C3—C17164.6 (7)C20—C21—C22—C2340.4 (7)
C16—C2—C3—C1754.3 (9)C35—C21—C22—C2369.8 (7)
C1—C2—C3—C569.2 (7)C20—C21—C22—C2468.4 (7)
C16—C2—C3—C5179.4 (6)C35—C21—C22—C24178.6 (6)
C1—O1—C4—O2179.9 (7)C20—O7—C23—O8179.3 (7)
C1—O1—C4—C33.0 (8)C20—O7—C23—C221.4 (8)
C2—C3—C4—O2152.2 (8)C36—C22—C23—O828.5 (11)
C17—C3—C4—O225.5 (11)C21—C22—C23—O8154.1 (8)
C5—C3—C4—O294.7 (10)C24—C22—C23—O893.8 (9)
C2—C3—C4—O124.5 (7)C36—C22—C23—O7150.7 (6)
C17—C3—C4—O1151.3 (6)C21—C22—C23—O725.1 (7)
C5—C3—C4—O188.5 (7)C24—C22—C23—O787.0 (7)
C4—C3—C5—O3176.7 (6)C36—C22—C24—O957.8 (9)
C2—C3—C5—O369.2 (8)C21—C22—C24—O974.4 (8)
C17—C3—C5—O361.3 (8)C23—C22—C24—O9179.7 (6)
C4—C3—C5—C652.0 (9)C36—C22—C24—C25175.5 (8)
C2—C3—C5—C655.5 (9)C21—C22—C24—C2552.3 (9)
C17—C3—C5—C6174.1 (7)C23—C22—C24—C2553.0 (9)
O3—C5—C6—C784.0 (9)O9—C24—C25—C2690.8 (10)
C3—C5—C6—C738.2 (10)C22—C24—C25—C2633.3 (12)
C5—C6—C7—C138.8 (10)C24—C25—C26—C2033.1 (12)
O1—C1—C7—C652.0 (9)O7—C20—C26—C2556.0 (9)
C8—C1—C7—C6177.3 (7)C27—C20—C26—C25179.5 (7)
C2—C1—C7—C657.9 (9)C21—C20—C26—C2553.8 (10)
O1—C1—C8—C943.9 (9)O7—C20—C27—C2842.7 (8)
C7—C1—C8—C981.1 (10)C26—C20—C27—C2880.8 (9)
C2—C1—C8—C9151.9 (7)C21—C20—C27—C28151.3 (6)
O1—C1—C8—C1482.2 (7)O7—C20—C27—C3384.2 (7)
C7—C1—C8—C14152.7 (7)C26—C20—C27—C33152.3 (7)
C2—C1—C8—C1425.7 (8)C21—C20—C27—C3324.5 (8)
C1—C8—C9—C10168.4 (7)C20—C27—C28—C29171.7 (7)
C14—C8—C9—C1047.2 (10)C33—C27—C28—C2948.7 (9)
C8—C9—C10—C1138.4 (11)C27—C28—C29—C3038.6 (10)
C9—C10—C11—C1289.9 (9)C28—C29—C30—C3187.4 (8)
C9—C10—C11—C1522.8 (10)C28—C29—C30—C3422.4 (9)
C15—C11—C12—C18155.2 (9)C34—C30—C31—C37161.8 (9)
C10—C11—C12—C1886.7 (11)C29—C30—C31—C3783.8 (11)
C15—C11—C12—C1322.0 (8)C34—C30—C31—C3216.8 (8)
C10—C11—C12—C1396.1 (8)C29—C30—C31—C3297.5 (7)
C18—C12—C13—C14173.7 (9)C37—C31—C32—C33167.8 (9)
C11—C12—C13—C149.2 (8)C30—C31—C32—C3313.5 (8)
C12—C13—C14—C1536.5 (7)C31—C32—C33—C3439.4 (7)
C12—C13—C14—C16161.9 (6)C31—C32—C33—C35164.5 (6)
C12—C13—C14—C878.3 (7)C31—C32—C33—C2776.3 (7)
C9—C8—C14—C13102.4 (8)C20—C27—C33—C34122.1 (6)
C1—C8—C14—C13131.0 (7)C28—C27—C33—C346.1 (8)
C9—C8—C14—C156.5 (9)C20—C27—C33—C32127.3 (6)
C1—C8—C14—C15120.0 (7)C28—C27—C33—C32104.4 (7)
C9—C8—C14—C16131.2 (7)C20—C27—C33—C352.2 (8)
C1—C8—C14—C164.7 (8)C28—C27—C33—C35130.4 (7)
C12—C11—C15—C1444.0 (7)C32—C33—C34—C3050.6 (7)
C10—C11—C15—C1475.2 (8)C35—C33—C34—C30176.1 (6)
C13—C14—C15—C1149.9 (7)C27—C33—C34—C3065.1 (7)
C16—C14—C15—C11176.2 (6)C31—C30—C34—C3340.9 (7)
C8—C14—C15—C1164.8 (7)C29—C30—C34—C3375.1 (7)
C3—C2—C16—C1992.6 (8)C22—C21—C35—C3892.9 (8)
C1—C2—C16—C19158.9 (6)C20—C21—C35—C38157.7 (6)
C3—C2—C16—C14141.8 (6)C22—C21—C35—C33144.0 (6)
C1—C2—C16—C1433.4 (7)C20—C21—C35—C3334.6 (7)
C13—C14—C16—C1924.3 (9)C34—C33—C35—C3894.3 (8)
C15—C14—C16—C1993.2 (8)C32—C33—C35—C3823.7 (9)
C8—C14—C16—C19145.9 (6)C27—C33—C35—C38144.9 (6)
C13—C14—C16—C2103.7 (7)C34—C33—C35—C21141.0 (7)
C15—C14—C16—C2138.8 (7)C32—C33—C35—C21101.1 (7)
C8—C14—C16—C217.8 (8)C27—C33—C35—C2120.2 (8)
C2—C16—C19—O529.1 (10)C21—C35—C38—O1127.7 (10)
C14—C16—C19—O593.1 (9)C33—C35—C38—O1191.4 (9)
C2—C16—C19—O4152.4 (6)C21—C35—C38—O10153.4 (6)
C14—C16—C19—O485.5 (8)C33—C35—C38—O1087.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O11i0.842.012.825 (8)163 (4)
O4—H4···O6ii0.841.832.634 (8)158 (6)
O6—H6WA···O8iii0.82 (5)2.15 (6)2.939 (9)161 (6)
O6—H6WB···O4iv0.82 (5)1.93 (13)2.634 (9)143 (6)
O10—H10···O120.83 (7)1.81 (6)2.625 (8)163 (4)
O12—H12A···O20.82 (9)2.16 (11)2.925 (10)154 (10)
O12—H12B···O9iv0.82 (9)1.91 (6)2.727 (10)167 (2)
C11—H11···O81.002.543.531 (10)173 (7)
C30—H30···O2v1.002.463.442 (9)166 (7)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z+1; (iii) x1, y, z1; (iv) x, y, z1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24O5·H2O
Mr350.40
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)9.6466 (13), 18.968 (3), 9.4910 (12)
β (°) 89.989 (3)
V3)1736.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.35 × 0.19
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(SHELXTL; Siemens, 1998)
Tmin, Tmax0.958, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
17165, 3281, 3080
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.207, 1.13
No. of reflections3281
No. of parameters475
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O11i0.842.012.825 (8)163 (4)
O4—H4···O6ii0.841.832.634 (8)158 (6)
O6—H6WA···O8iii0.82 (5)2.15 (6)2.939 (9)161 (6)
O6—H6WB···O4iv0.82 (5)1.93 (13)2.634 (9)143 (6)
O10—H10···O120.83 (7)1.81 (6)2.625 (8)163 (4)
O12—H12A···O20.82 (9)2.16 (11)2.925 (10)154 (10)
O12—H12B···O9iv0.82 (9)1.91 (6)2.727 (10)167 (2)
C11—H11···O81.002.543.531 (10)173 (7)
C30—H30···O2v1.002.463.442 (9)166 (7)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z+1; (iii) x1, y, z1; (iv) x, y, z1; (v) x+1, y, z.
 

References

First citationCoggins, C. W., Scora, R. W., Lewis, L. N. & Knapp, J. C. F. (1969). J. Agric. Food Chem. 17, 805–806.  CrossRef Web of Science Google Scholar
First citationEllames, G., Hanson, J. R., Hitchcock, P. B. & Thomas, S. A. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 1922–1926.  CSD CrossRef Web of Science Google Scholar
First citationFurber, M., Mander, L. N., Patrick, G. L. & Willis, A. C. (1992). Acta Cryst. C48, 1348–1350.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHossain, M. B., van der Helm, D., Sanduja, R. & Alam, M. (1988). Acta Cryst. C44, 1022–1024.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKomoda, Y., Isogai, Y. & Okamoto, T. (1968). Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 18, 221–223.  CAS Google Scholar
First citationKutschabsky, L. & Adam, G. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1653–1655.  CSD CrossRef Web of Science Google Scholar
First citationNagata, W., Wakabayashi, T., Narisada, M., Hayase, Y. & Kamata, S. (1971). J. Am. Chem. Soc. 93, 5740–5758.  CrossRef CAS Web of Science Google Scholar
First citationPoling, S. M. (1991). J. Agric. Food Chem. 39, 677–680.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1998). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThompson, H. W., Brunskill, A. P. J. & Lalancette, R. A. (2000). Acta Cryst. C56, 1507–1509.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds