metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4′-chloro-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)iron(II) dinitrate dihydrate

aCollege of Sciences, Nanjing University of Technology, Nanjing, 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn, whuang@nju.edu.cn

(Received 22 November 2007; accepted 24 November 2007; online 6 December 2007)

The title complex, [Fe(C15H10ClN3)2](NO3)2·2H2O, has a six-coordinate iron(II) center balanced by two nitrate anions. The Fe atom lies on a twofold rotation axis. The complex exhibits an octa­hedral coordination configuration, where the dihedral angle between the two planar tridentate ligands is 92.4 (1)°. The crystal structure involves O—H⋯O hydrogen bonds.

Related literature

For the related hydrochloride tetrafluoridoborate and hydrochloride hexafluorophosphate of 4′-chloro-2,2′:6′,2′′-terpyridine, see: Huang & Qian (2007a[Huang, W. & Qian, H. F. (2007a). J. Mol. Struct. 832, 108-106.]). For the related RuII, CuII, ZnII, NiII and FeII complexes of 4′-chloro-2,2′:6′,2′′-terpyridine, see: Huang & Qian 2007b[Huang, W. & Qian, H. F. (2007b). J. Mol. Struct. In the press. doi:10.1016/j.molstruc.2007.03.038.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C15H10ClN3)2](NO3)2·2H2O

  • Mr = 751.32

  • Monoclinic, C 2/c

  • a = 18.049 (2) Å

  • b = 18.255 (3) Å

  • c = 10.0741 (14) Å

  • β = 102.668 (2)°

  • V = 3238.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 291 (2) K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.931

  • 8547 measured reflections

  • 3192 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 0.97

  • 3192 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N2 1.880 (3)
Fe1—N4 1.881 (3)
Fe1—N1 1.964 (2)
Fe1—N1i 1.964 (2)
Fe1—N3 1.975 (2)
Fe1—N3i 1.975 (2)
N2—Fe1—N4 180
N2—Fe1—N1 81.04 (6)
N4—Fe1—N1 98.96 (6)
N1—Fe1—N1i 162.09 (11)
N2—Fe1—N3 99.34 (6)
N4—Fe1—N3 80.66 (6)
N1—Fe1—N3 92.75 (8)
N1i—Fe1—N3 90.14 (8)
N3—Fe1—N3i 161.33 (11)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1ii 0.93 (5) 1.96 (5) 2.859 (5) 162 (4)
O4—H4A⋯O3iii 0.78 (3) 2.36 (3) 3.114 (4) 164 (3)
O4—H4A⋯O1iii 0.78 (3) 2.40 (3) 3.042 (4) 140 (3)
Symmetry codes: (ii) [x, -y, z-{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have newly reported the hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate of 4'-chloro-2,2':6',2''-terpyridine (Huang & Qian, 2007a), and Ru(II), Cu(II), Zn(II), Ni(II) and Fe(II) complexes of 4'-chloro-2,2':6',2''-terpyridine with the metal/ligand ratios of 1:1 and 1:2. In this paper, we report the structure of a ferrous nitrate complex bearing the same 4'-chloro-2,2':6',2''-terpyridine ligand with the 1:2 metal/ligand ratio.

The atom-numbering scheme of the title compound (I) is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The iron(II) center displays a six-coordinate octahedral configuration where each 4'-chloro-2,2':6',2'-terpyridine molecule serves as a 3 N tridentate ligand. The six Fe—N bond lengths fall with the normal ranges of 1.880 (3)—1.975 (2) Å (Huang & Qian, 2007b), where the two central Fe—N bond lengths are somewhat shorter than the side ones. The two terpyridine ligands are planar and the dihedral angle between them is 92.4 (1)°. In addition, O—H···O hydrogen bonds are observed between the hydrogen atoms of water molecule and the oxygen atoms of nitrate anions (Table 2).

Related literature top

For the related hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate of 4'-chloro-2,2':6',2''-terpyridine, see: Huang & Qian (2007a). For the related RuII, CuII, ZnII, NiII and FeII complexes of 4'-chloro-2,2':6',2''-terpyridine, see: Huang & Qian 2007b).

Experimental top

The treatment of Fe(NO3)2.6H2O (0.072 g, 0.25 mmol) and 4'-chloro-2,2':6',2'-terpyridine (0.134 g, 0.50 mmol) in 30 cm3 me thanol under reflux condition for 1 h produced deep red microcrystals in a yield of 83% (0.156 g). Anal. Calcd. for FeC30H24N8Cl2O8: C: 47.96, H: 3.22, N: 14.91. Found: C: 47.88; H: 3.24; N: 14.98. Main FT—IR (KBr pellets, cm-1): 3447 (s), 1663 (s), 1560 (s), 1545 (s), 1466 (m) and 1368 (s). Single crystals of the title complex suitable for X-ray diffraction measurement were obtained from the mixture of ethanol and water solutions at a ratio of 3:1 by slow evaporation in air at ambient temperature.

Refinement top

The two H atoms bonded to the water oxygen atom were located in the difference synthesis and were refined isotropically, whereas the other H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

We have newly reported the hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate of 4'-chloro-2,2':6',2''-terpyridine (Huang & Qian, 2007a), and Ru(II), Cu(II), Zn(II), Ni(II) and Fe(II) complexes of 4'-chloro-2,2':6',2''-terpyridine with the metal/ligand ratios of 1:1 and 1:2. In this paper, we report the structure of a ferrous nitrate complex bearing the same 4'-chloro-2,2':6',2''-terpyridine ligand with the 1:2 metal/ligand ratio.

The atom-numbering scheme of the title compound (I) is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The iron(II) center displays a six-coordinate octahedral configuration where each 4'-chloro-2,2':6',2'-terpyridine molecule serves as a 3 N tridentate ligand. The six Fe—N bond lengths fall with the normal ranges of 1.880 (3)—1.975 (2) Å (Huang & Qian, 2007b), where the two central Fe—N bond lengths are somewhat shorter than the side ones. The two terpyridine ligands are planar and the dihedral angle between them is 92.4 (1)°. In addition, O—H···O hydrogen bonds are observed between the hydrogen atoms of water molecule and the oxygen atoms of nitrate anions (Table 2).

For the related hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate of 4'-chloro-2,2':6',2''-terpyridine, see: Huang & Qian (2007a). For the related RuII, CuII, ZnII, NiII and FeII complexes of 4'-chloro-2,2':6',2''-terpyridine, see: Huang & Qian 2007b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis(4'-chloro-2,2':6',2''-terpyridine-κ3N,N',N'')iron(II) dinitrate dihydrate top
Crystal data top
[Fe(C15H10ClN3)2](NO3)2·2H2OF(000) = 1536
Mr = 751.32Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2481 reflections
a = 18.049 (2) Åθ = 2.3–25.0°
b = 18.255 (3) ŵ = 0.70 mm1
c = 10.0741 (14) ÅT = 291 K
β = 102.668 (2)°Block, red
V = 3238.5 (8) Å30.12 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3192 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2122
Tmin = 0.922, Tmax = 0.931k = 1522
8547 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe(C15H10ClN3)2](NO3)2·2H2OV = 3238.5 (8) Å3
Mr = 751.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.049 (2) ŵ = 0.70 mm1
b = 18.255 (3) ÅT = 291 K
c = 10.0741 (14) Å0.12 × 0.10 × 0.10 mm
β = 102.668 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2120 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.931Rint = 0.042
8547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.43 e Å3
3192 reflectionsΔρmin = 0.42 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe11.00000.25347 (2)0.25000.04349 (18)
C10.89844 (14)0.28704 (15)0.4385 (3)0.0581 (7)
H10.90740.33640.42500.070*
C20.85298 (17)0.26824 (18)0.5259 (3)0.0733 (9)
H20.83300.30450.57270.088*
C30.83702 (17)0.19608 (19)0.5445 (3)0.0737 (9)
H30.80580.18290.60270.088*
C40.86806 (14)0.14357 (16)0.4753 (3)0.0609 (7)
H40.85690.09430.48440.073*
C50.91552 (13)0.16424 (13)0.3929 (2)0.0484 (6)
C60.95684 (13)0.11401 (13)0.3214 (2)0.0490 (6)
C70.95566 (15)0.03835 (13)0.3241 (3)0.0566 (7)
H70.92620.01300.37390.068*
C81.00000.00191 (19)0.25000.0569 (10)
C90.87358 (14)0.22036 (15)0.0110 (3)0.0552 (7)
H90.88320.17100.03050.066*
C100.81690 (16)0.23907 (17)0.0981 (3)0.0652 (8)
H100.78880.20280.15140.078*
C110.80185 (16)0.31174 (18)0.1283 (3)0.0674 (8)
H110.76340.32510.20190.081*
C120.84469 (14)0.36479 (15)0.0478 (3)0.0582 (7)
H120.83580.41430.06660.070*
C130.90054 (12)0.34274 (13)0.0603 (2)0.0459 (6)
C140.94967 (13)0.39307 (13)0.1540 (2)0.0461 (6)
C150.94826 (14)0.46877 (13)0.1511 (3)0.0554 (7)
H150.91370.49410.08490.066*
C161.00000.50551 (19)0.25000.0563 (9)
Cl11.00000.09281 (5)0.25000.0883 (4)
Cl21.00000.60025 (6)0.25000.0908 (4)
H4A0.8087 (18)0.0502 (17)0.052 (3)0.069 (11)*
H4B0.809 (3)0.036 (3)0.071 (5)0.16 (2)*
N10.93034 (11)0.23672 (10)0.3718 (2)0.0483 (5)
N21.00000.15050 (14)0.25000.0450 (7)
N30.91592 (11)0.27102 (10)0.0912 (2)0.0462 (5)
N41.00000.35651 (14)0.25000.0421 (6)
N50.72096 (17)0.05138 (16)0.6869 (3)0.0819 (8)
O10.7680 (2)0.0029 (2)0.7212 (3)0.1692 (17)
O20.6813 (2)0.05091 (14)0.5761 (4)0.1604 (16)
O30.71662 (18)0.09870 (17)0.7664 (3)0.1287 (11)
O40.84123 (15)0.04554 (14)0.0124 (3)0.0804 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0474 (3)0.0321 (3)0.0510 (3)0.0000.0108 (2)0.000
C10.0563 (16)0.0513 (16)0.0695 (18)0.0025 (13)0.0201 (14)0.0072 (14)
C20.075 (2)0.075 (2)0.078 (2)0.0025 (17)0.0355 (17)0.0120 (17)
C30.0697 (19)0.087 (2)0.072 (2)0.0072 (17)0.0318 (16)0.0073 (18)
C40.0575 (16)0.0599 (17)0.0656 (17)0.0099 (14)0.0140 (14)0.0088 (15)
C50.0479 (14)0.0449 (14)0.0500 (14)0.0026 (12)0.0059 (11)0.0047 (12)
C60.0509 (14)0.0398 (14)0.0520 (15)0.0021 (12)0.0020 (12)0.0048 (12)
C70.0576 (16)0.0429 (15)0.0612 (17)0.0068 (13)0.0043 (13)0.0098 (13)
C80.062 (2)0.0336 (19)0.063 (2)0.0000.013 (2)0.000
C90.0576 (16)0.0470 (14)0.0608 (17)0.0072 (12)0.0128 (13)0.0106 (13)
C100.0645 (18)0.071 (2)0.0578 (17)0.0130 (16)0.0088 (14)0.0152 (15)
C110.0615 (17)0.082 (2)0.0537 (17)0.0016 (16)0.0021 (13)0.0035 (16)
C120.0598 (16)0.0551 (16)0.0566 (16)0.0010 (13)0.0058 (13)0.0016 (13)
C130.0450 (13)0.0427 (14)0.0497 (14)0.0014 (11)0.0094 (11)0.0014 (11)
C140.0468 (14)0.0388 (13)0.0506 (14)0.0008 (11)0.0060 (11)0.0008 (11)
C150.0576 (16)0.0406 (14)0.0635 (17)0.0034 (12)0.0035 (13)0.0068 (12)
C160.066 (2)0.0329 (18)0.068 (2)0.0000.011 (2)0.000
Cl10.1096 (9)0.0342 (5)0.1052 (9)0.0000.0113 (7)0.000
Cl20.1091 (9)0.0332 (5)0.1170 (10)0.0000.0033 (8)0.000
N10.0486 (12)0.0416 (12)0.0539 (12)0.0015 (9)0.0095 (10)0.0020 (9)
N20.0479 (16)0.0347 (15)0.0522 (17)0.0000.0107 (13)0.000
N30.0512 (12)0.0390 (11)0.0501 (12)0.0044 (9)0.0147 (9)0.0042 (9)
N40.0444 (15)0.0335 (14)0.0480 (16)0.0000.0096 (13)0.000
N50.083 (2)0.0703 (19)0.082 (2)0.0056 (15)0.0041 (17)0.0227 (16)
O10.159 (3)0.232 (5)0.097 (2)0.093 (3)0.015 (2)0.032 (2)
O20.204 (3)0.0771 (18)0.142 (3)0.033 (2)0.089 (3)0.0424 (18)
O30.154 (3)0.114 (2)0.116 (2)0.015 (2)0.025 (2)0.0545 (19)
O40.0779 (16)0.0696 (15)0.0858 (18)0.0044 (12)0.0011 (16)0.0029 (13)
Geometric parameters (Å, º) top
Fe1—N21.880 (3)C9—C101.371 (4)
Fe1—N41.881 (3)C9—H90.9300
Fe1—N11.964 (2)C10—C111.375 (4)
Fe1—N1i1.964 (2)C10—H100.9300
Fe1—N31.975 (2)C11—C121.385 (4)
Fe1—N3i1.975 (2)C11—H110.9300
C1—N11.340 (3)C12—C131.372 (3)
C1—C21.373 (4)C12—H120.9300
C1—H10.9300C13—N31.360 (3)
C2—C31.370 (4)C13—C141.468 (3)
C2—H20.9300C14—N41.349 (3)
C3—C41.374 (4)C14—C151.382 (3)
C3—H30.9300C15—C161.381 (3)
C4—C51.370 (3)C15—H150.9300
C4—H40.9300C16—C15i1.381 (3)
C5—N11.375 (3)C16—Cl21.729 (4)
C5—C61.467 (3)N2—C6i1.346 (3)
C6—N21.346 (3)N4—C14i1.349 (3)
C6—C71.382 (3)N5—O21.187 (3)
C7—C81.379 (3)N5—O31.193 (3)
C7—H70.9300N5—O11.223 (4)
C8—C7i1.379 (3)O4—H4A0.78 (3)
C8—Cl11.729 (4)O4—H4B0.93 (5)
C9—N31.349 (3)
N2—Fe1—N4180.000 (1)N3—C9—H9118.8
N2—Fe1—N181.04 (6)C10—C9—H9118.8
N4—Fe1—N198.96 (6)C9—C10—C11119.6 (3)
N2—Fe1—N1i81.04 (6)C9—C10—H10120.2
N4—Fe1—N1i98.96 (6)C11—C10—H10120.2
N1—Fe1—N1i162.09 (11)C10—C11—C12119.1 (3)
N2—Fe1—N399.34 (6)C10—C11—H11120.4
N4—Fe1—N380.66 (6)C12—C11—H11120.4
N1—Fe1—N392.75 (8)C13—C12—C11118.6 (3)
N1i—Fe1—N390.14 (8)C13—C12—H12120.7
N2—Fe1—N3i99.34 (6)C11—C12—H12120.7
N4—Fe1—N3i80.66 (6)N3—C13—C12122.8 (2)
N1—Fe1—N3i90.14 (8)N3—C13—C14113.0 (2)
N1i—Fe1—N3i92.75 (8)C12—C13—C14124.2 (2)
N3—Fe1—N3i161.33 (11)N4—C14—C15121.1 (2)
N1—C1—C2122.2 (3)N4—C14—C13111.6 (2)
N1—C1—H1118.9C15—C14—C13127.3 (2)
C2—C1—H1118.9C16—C15—C14117.6 (2)
C3—C2—C1120.1 (3)C16—C15—H15121.2
C3—C2—H2120.0C14—C15—H15121.2
C1—C2—H2120.0C15—C16—C15i121.9 (3)
C2—C3—C4118.7 (3)C15—C16—Cl2119.06 (16)
C2—C3—H3120.6C15i—C16—Cl2119.06 (16)
C4—C3—H3120.6C1—N1—C5117.6 (2)
C5—C4—C3119.6 (3)C1—N1—Fe1127.63 (18)
C5—C4—H4120.2C5—N1—Fe1114.76 (16)
C3—C4—H4120.2C6i—N2—C6120.7 (3)
C4—C5—N1121.8 (2)C6i—N2—Fe1119.65 (14)
C4—C5—C6125.3 (2)C6—N2—Fe1119.65 (14)
N1—C5—C6112.9 (2)C9—N3—C13117.5 (2)
N2—C6—C7121.2 (2)C9—N3—Fe1127.40 (18)
N2—C6—C5111.7 (2)C13—N3—Fe1115.06 (15)
C7—C6—C5127.1 (2)C14i—N4—C14120.7 (3)
C8—C7—C6117.3 (3)C14i—N4—Fe1119.65 (13)
C8—C7—H7121.4C14—N4—Fe1119.65 (13)
C6—C7—H7121.4O2—N5—O3121.5 (4)
C7—C8—C7i122.3 (3)O2—N5—O1119.9 (3)
C7—C8—Cl1118.84 (17)O3—N5—O1118.6 (3)
C7i—C8—Cl1118.84 (17)H4A—O4—H4B95 (3)
N3—C9—C10122.3 (3)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1ii0.93 (5)1.96 (5)2.859 (5)162 (4)
O4—H4A···O3iii0.78 (3)2.36 (3)3.114 (4)164 (3)
O4—H4A···O1iii0.78 (3)2.40 (3)3.042 (4)140 (3)
Symmetry codes: (ii) x, y, z1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe(C15H10ClN3)2](NO3)2·2H2O
Mr751.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)18.049 (2), 18.255 (3), 10.0741 (14)
β (°) 102.668 (2)
V3)3238.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.922, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
8547, 3192, 2120
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 0.97
No. of reflections3192
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Fe1—N21.880 (3)Fe1—N1i1.964 (2)
Fe1—N41.881 (3)Fe1—N31.975 (2)
Fe1—N11.964 (2)Fe1—N3i1.975 (2)
N2—Fe1—N4180.000 (1)N4—Fe1—N380.66 (6)
N2—Fe1—N181.04 (6)N1—Fe1—N392.75 (8)
N4—Fe1—N198.96 (6)N1i—Fe1—N390.14 (8)
N1—Fe1—N1i162.09 (11)N3—Fe1—N3i161.33 (11)
N2—Fe1—N399.34 (6)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1ii0.93 (5)1.96 (5)2.859 (5)162 (4)
O4—H4A···O3iii0.78 (3)2.36 (3)3.114 (4)164 (3)
O4—H4A···O1iii0.78 (3)2.40 (3)3.042 (4)140 (3)
Symmetry codes: (ii) x, y, z1/2; (iii) x, y, z1.
 

Acknowledgements

WH acknowledges the Major State Basic Research Development Programs (No. 2006CB806104 and No. 2007­CB925101), the National Natural Science Foundation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

References

First citationBruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W. & Qian, H. F. (2007a). J. Mol. Struct. 832, 108–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, W. & Qian, H. F. (2007b). J. Mol. Struct. In the press. doi:10.1016/j.molstruc.2007.03.038.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds