organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Nitro­phen­yl)-3-phenyl­thio­urea

aNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao, 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 22 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, C13H11N3O2S, was prepared by reaction of 2-nitro­benzenamine, KOH and 1-isothio­cyanato­benzene in an ethanol solution at room temperature. The dihedral angles formed between the thiourea plane and the phenyl rings are 61.9 and 31.0°. The dihedral angle between the two phenyl rings is 78.1°. In the crystal structure, there are weak inter­molecular N—H⋯S and C—H⋯S hydrogen-bonding inter­actions.

Related literature

For related literature, see: Reinbold & Morar (1984[Reinbold, A. M. & Morar, G. V. (1984). Ser. Biol. Khim. Nauk. 4, 75-77.]); Xue et al. (2004[Xue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem. 23, 441-444.]); Madan & Taneja (1991[Madan, V. K. & Taneja, A. D. (1991). J. Indian Chem. Soc. 68, 162-163.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O2S

  • Mr = 273.31

  • Monoclinic, P 21 /c

  • a = 7.3110 (15) Å

  • b = 24.113 (5) Å

  • c = 7.4320 (15) Å

  • β = 90.22 (3)°

  • V = 1310.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2964 measured reflections

  • 2764 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.09

  • 2764 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.56 3.3744 (19) 158
C3—H3A⋯S1ii 0.93 2.84 3.725 (3) 159
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thioureas have been studied for many years because of their broad antibiosis and sterilization properties Recent years study shows that thioureas not only can be used to kill insects and adjust plant growth but also have anti-viral activities (Madan et al., 1991; Reinbold et al.,1984). From our early quantum study on these compounds, we find that they have several active centers and can form polyligand complexes with metals easily (Xue et al., 2004).These complexes are widely used as anticancer medicines Therefore study on thioureas has important impact on the future. In order to search for new compounds with higher bioactivity, the title compound was synthesized and we herein report its crystal structure.

In the title compound, bond lengths and angles are generally normal. The C7—S1 bond length of 1.686 (2)Å is indicative of considerable double-bond character. The dihedral angle between the plane (C6—C8/N1/N2/S1) and the plane (C8—C13/N2) is 31.01°. The torsion angles of S1—C7—N2—C8 and N1—C7—N2—C8 are -1.31 and -179.19°, respectively.

In the crystal structure, there are weak intermolecular C—H···S and N—H···S hydrogen bonding interactions. These interactions stabilize the title structure.

Related literature top

For related literature, see: Reinbold & Morar (1984); Xue et al. (2004); Madan & Taneja (1991).

Experimental top

The title compound was prepared by reaction of 2-nitrobenzenamine (0.05 mol), KOH (0.15 mol) and 1-isothiocyanatobenzene (0.05 mol) in the ethanol solution (40 ml) at room temperature. Single crystals of the title compound suitable for X-ray measurements was obtained by recrystallization from ethanol/acetone (v/v=1:1) at room temperature.

Refinement top

The H atoms were fixed geometrically and were treated as riding on the parent C atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and Uiso=1.2 times Ueq of the parent atoms.

Structure description top

Thioureas have been studied for many years because of their broad antibiosis and sterilization properties Recent years study shows that thioureas not only can be used to kill insects and adjust plant growth but also have anti-viral activities (Madan et al., 1991; Reinbold et al.,1984). From our early quantum study on these compounds, we find that they have several active centers and can form polyligand complexes with metals easily (Xue et al., 2004).These complexes are widely used as anticancer medicines Therefore study on thioureas has important impact on the future. In order to search for new compounds with higher bioactivity, the title compound was synthesized and we herein report its crystal structure.

In the title compound, bond lengths and angles are generally normal. The C7—S1 bond length of 1.686 (2)Å is indicative of considerable double-bond character. The dihedral angle between the plane (C6—C8/N1/N2/S1) and the plane (C8—C13/N2) is 31.01°. The torsion angles of S1—C7—N2—C8 and N1—C7—N2—C8 are -1.31 and -179.19°, respectively.

In the crystal structure, there are weak intermolecular C—H···S and N—H···S hydrogen bonding interactions. These interactions stabilize the title structure.

For related literature, see: Reinbold & Morar (1984); Xue et al. (2004); Madan & Taneja (1991).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
1-(2-Nitrophenyl)-3-phenylthiourea top
Crystal data top
C13H11N3O2SF(000) = 568
Mr = 273.31Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.3110 (15) Åθ = 1.7–27.0°
b = 24.113 (5) ŵ = 0.25 mm1
c = 7.4320 (15) ÅT = 293 K
β = 90.22 (3)°Block, yellow
V = 1310.2 (5) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.7°
Graphite monochromatorh = 08
ω scansk = 028
2964 measured reflectionsl = 88
2764 independent reflections3 standard reflections every 100 reflections
2022 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.4395P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2764 reflectionsΔρmax = 0.31 e Å3
173 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.115 (6)
Crystal data top
C13H11N3O2SV = 1310.2 (5) Å3
Mr = 273.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3110 (15) ŵ = 0.25 mm1
b = 24.113 (5) ÅT = 293 K
c = 7.4320 (15) Å0.25 × 0.20 × 0.18 mm
β = 90.22 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
2964 measured reflections3 standard reflections every 100 reflections
2764 independent reflections intensity decay: none
2022 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2764 reflectionsΔρmin = 0.41 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20879 (9)0.56603 (3)0.96789 (9)0.0669 (3)
O10.0828 (3)0.79863 (8)1.3139 (4)0.1026 (8)
O20.1250 (3)0.71304 (8)1.3693 (3)0.0785 (6)
N10.0460 (3)0.55266 (7)1.2122 (3)0.0556 (5)
H1A0.05490.52061.16190.067*
N20.0901 (2)0.63776 (7)1.2248 (2)0.0482 (4)
H2A0.01450.64251.31190.058*
N30.0333 (3)0.75057 (8)1.3045 (3)0.0577 (5)
C10.1032 (4)0.57222 (10)1.5305 (3)0.0622 (6)
H1B0.02200.57311.55280.075*
C20.2268 (5)0.58020 (11)1.6701 (4)0.0767 (8)
H2B0.18400.58661.78630.092*
C30.4120 (5)0.57870 (12)1.6372 (5)0.0844 (10)
H3A0.49390.58481.73050.101*
C40.4759 (4)0.56819 (12)1.4666 (5)0.0853 (10)
H4A0.60130.56631.44580.102*
C50.3554 (3)0.56029 (10)1.3246 (4)0.0635 (6)
H5A0.39900.55331.20910.076*
C60.1685 (3)0.56302 (8)1.3585 (3)0.0477 (5)
C70.0815 (3)0.58703 (9)1.1440 (3)0.0462 (5)
C80.2032 (3)0.68340 (8)1.1878 (2)0.0423 (5)
C90.3819 (3)0.67718 (9)1.1219 (3)0.0509 (5)
H9A0.42770.64171.10300.061*
C100.4912 (3)0.72225 (11)1.0846 (3)0.0601 (6)
H10A0.60860.71671.04030.072*
C110.4284 (4)0.77548 (10)1.1125 (3)0.0649 (7)
H11A0.50150.80571.08360.078*
C120.2561 (4)0.78358 (9)1.1834 (3)0.0599 (6)
H12A0.21430.81931.20580.072*
C130.1449 (3)0.73817 (8)1.2216 (3)0.0465 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0690 (4)0.0677 (4)0.0644 (4)0.0224 (3)0.0339 (3)0.0228 (3)
O10.0986 (16)0.0629 (12)0.147 (2)0.0267 (11)0.0178 (14)0.0059 (12)
O20.0682 (11)0.0700 (12)0.0977 (14)0.0081 (9)0.0318 (10)0.0063 (10)
N10.0613 (12)0.0468 (10)0.0589 (11)0.0139 (8)0.0251 (9)0.0121 (8)
N20.0478 (10)0.0446 (9)0.0523 (10)0.0057 (7)0.0190 (8)0.0050 (7)
N30.0621 (12)0.0547 (11)0.0562 (11)0.0099 (10)0.0038 (9)0.0074 (9)
C10.0589 (14)0.0683 (15)0.0595 (15)0.0087 (11)0.0147 (11)0.0049 (11)
C20.104 (2)0.0671 (16)0.0595 (15)0.0087 (15)0.0338 (15)0.0044 (12)
C30.092 (2)0.0666 (17)0.095 (2)0.0051 (15)0.0597 (19)0.0042 (15)
C40.0514 (15)0.0791 (19)0.126 (3)0.0074 (13)0.0338 (16)0.0107 (18)
C50.0527 (14)0.0594 (14)0.0787 (17)0.0021 (11)0.0120 (12)0.0061 (12)
C60.0504 (12)0.0376 (10)0.0552 (12)0.0051 (8)0.0195 (9)0.0013 (8)
C70.0441 (11)0.0480 (11)0.0466 (11)0.0048 (9)0.0117 (8)0.0016 (9)
C80.0460 (11)0.0449 (10)0.0362 (10)0.0060 (8)0.0024 (8)0.0019 (8)
C90.0464 (11)0.0558 (12)0.0505 (12)0.0058 (9)0.0070 (9)0.0018 (9)
C100.0529 (13)0.0753 (17)0.0522 (13)0.0214 (11)0.0042 (10)0.0002 (11)
C110.0758 (17)0.0615 (15)0.0575 (14)0.0303 (13)0.0017 (12)0.0054 (11)
C120.0816 (17)0.0441 (11)0.0540 (13)0.0103 (11)0.0096 (12)0.0012 (9)
C130.0517 (12)0.0484 (11)0.0394 (10)0.0013 (9)0.0041 (9)0.0005 (8)
Geometric parameters (Å, º) top
S1—C71.686 (2)C3—H3A0.9300
O1—N31.216 (3)C4—C51.391 (4)
O2—N31.226 (3)C4—H4A0.9300
N1—C71.348 (3)C5—C61.390 (3)
N1—C61.433 (3)C5—H5A0.9300
N1—H1A0.8600C8—C91.405 (3)
N2—C71.364 (3)C8—C131.411 (3)
N2—C81.404 (2)C9—C101.378 (3)
N2—H2A0.8600C9—H9A0.9300
N3—C131.474 (3)C10—C111.379 (4)
C1—C61.381 (4)C10—H10A0.9300
C1—C21.392 (3)C11—C121.381 (4)
C1—H1B0.9300C11—H11A0.9300
C2—C31.375 (5)C12—C131.394 (3)
C2—H2B0.9300C12—H12A0.9300
C3—C41.373 (5)
C7—N1—C6127.83 (17)C1—C6—C5120.8 (2)
C7—N1—H1A116.1C1—C6—N1121.0 (2)
C6—N1—H1A116.1C5—C6—N1118.1 (2)
C7—N2—C8129.97 (16)N1—C7—N2114.60 (17)
C7—N2—H2A115.0N1—C7—S1119.45 (16)
C8—N2—H2A115.0N2—C7—S1125.92 (15)
O1—N3—O2121.2 (2)N2—C8—C9122.26 (18)
O1—N3—C13118.8 (2)N2—C8—C13121.35 (18)
O2—N3—C13120.00 (18)C9—C8—C13116.35 (18)
C6—C1—C2119.3 (3)C10—C9—C8121.8 (2)
C6—C1—H1B120.4C10—C9—H9A119.1
C2—C1—H1B120.4C8—C9—H9A119.1
C3—C2—C1120.3 (3)C9—C10—C11120.7 (2)
C3—C2—H2B119.8C9—C10—H10A119.7
C1—C2—H2B119.8C11—C10—H10A119.7
C4—C3—C2120.0 (2)C10—C11—C12119.6 (2)
C4—C3—H3A120.0C10—C11—H11A120.2
C2—C3—H3A120.0C12—C11—H11A120.2
C3—C4—C5120.8 (3)C11—C12—C13120.0 (2)
C3—C4—H4A119.6C11—C12—H12A120.0
C5—C4—H4A119.6C13—C12—H12A120.0
C6—C5—C4118.8 (3)C12—C13—C8121.5 (2)
C6—C5—H5A120.6C12—C13—N3116.3 (2)
C4—C5—H5A120.6C8—C13—N3122.17 (18)
C6—C1—C2—C30.3 (4)N2—C8—C9—C10179.4 (2)
C1—C2—C3—C41.3 (4)C13—C8—C9—C102.8 (3)
C2—C3—C4—C51.6 (4)C8—C9—C10—C110.5 (3)
C3—C4—C5—C60.2 (4)C9—C10—C11—C121.9 (4)
C2—C1—C6—C51.6 (3)C10—C11—C12—C131.9 (4)
C2—C1—C6—N1177.8 (2)C11—C12—C13—C80.6 (3)
C4—C5—C6—C11.4 (3)C11—C12—C13—N3177.4 (2)
C4—C5—C6—N1177.6 (2)N2—C8—C13—C12179.37 (19)
C7—N1—C6—C163.3 (3)C9—C8—C13—C122.9 (3)
C7—N1—C6—C5120.4 (3)N2—C8—C13—N32.8 (3)
C6—N1—C7—N21.0 (3)C9—C8—C13—N3174.95 (18)
C6—N1—C7—S1179.05 (19)O1—N3—C13—C129.1 (3)
C8—N2—C7—N1179.2 (2)O2—N3—C13—C12167.8 (2)
C8—N2—C7—S11.3 (3)O1—N3—C13—C8172.9 (2)
C7—N2—C8—C931.8 (3)O2—N3—C13—C810.2 (3)
C7—N2—C8—C13150.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.563.3744 (19)158
C3—H3A···S1ii0.932.843.725 (3)159
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H11N3O2S
Mr273.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3110 (15), 24.113 (5), 7.4320 (15)
β (°) 90.22 (3)
V3)1310.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2964, 2764, 2022
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.09
No. of reflections2764
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.41

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software (Enraf–Nonius, 1989, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.563.3744 (19)158.3
C3—H3A···S1ii0.932.843.725 (3)159.2
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMadan, V. K. & Taneja, A. D. (1991). J. Indian Chem. Soc. 68, 162–163.  CAS Google Scholar
First citationReinbold, A. M. & Morar, G. V. (1984). Ser. Biol. Khim. Nauk. 4, 75–77.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationXue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem. 23, 441–444.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds