metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(1,10-phenanthroline)[1,1,1-tri­fluoro-3-(2-theno­yl)acetonato]copper(II)

aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: zgzhang@sxu.edu.cn

(Received 15 November 2007; accepted 28 November 2007; online 6 December 2007)

In the title compound, [Cu(C8H4F3O2S)Cl(C12H8N2)], the CuII ion exhibits a distorted square-pyramidal geometry. The coordination environment of the cation comprises two N atoms from 1,10-phenanthroline and two O atoms from thenoyltrifluoro­acetone in the basal plane and one Cl anion at the apical site. There are weak inter­molecular C—H⋯Cl bonds.

Related literature

For related literature, see: Lenaerts et al. (2005[Lenaerts, P., Storms, A., Mullens, J., D'Haen, J., Goerller-Walrand, C., Binnemans, K. & Driesen, K. (2005). Chem. Mater. 17, 5194-5201.]); Li et al. (2005[Li, Z., Xu, D., Wu, J. & Chiang, M. (2005). J. Chem. Crystallogr. 45, 615-619.]); Perkins et al. (2005[Perkins, W. J., Maxwell, T., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m2047-m2049.], 2007[Perkins, W. J., Maxwell, T., Williams, K. B., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2007). Acta Cryst. E63, m423-m425.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4F3O2S)Cl(C12H8N2)]

  • Mr = 500.37

  • Monoclinic, P 21 /n

  • a = 12.461 (9) Å

  • b = 13.238 (9) Å

  • c = 12.932 (8) Å

  • β = 115.689 (10)°

  • V = 1922 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 298 (2) K

  • 0.4 × 0.1 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.60, Tmax = 0.94

  • 9166 measured reflections

  • 3376 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 1.00

  • 3376 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.941 (4)
Cu1—O1 1.956 (4)
Cu1—N1 2.007 (4)
Cu1—N2 2.013 (5)
Cu1—Cl1 2.467 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cl1i 0.93 2.68 3.604 (6) 177
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes of 2-thenoyltrifluoroacetone are attractive due to their potential applications in new material design (Lenaerts, et al., 2005; Perkins, et al., 2005, 2007). In this paper, we report a novel Cu complex of 2-thenoyltrifluoroacetone.

A displacement ellipsoid drawing of (I) is shown in Fig. 1. Selected bond lengths are listed in Table 1. The CuII ion exhibits a distorted square pyramidal geometry. The coordination environment of the cation is comprised of two N atoms from 1,10-phenanthroline and two O atoms from 2-thenoyltrifluoroacetone at the basal positions, and one Cl anion at the apical site (Cu1—Cl1: 2.467 (2) Å. There are weak intermolecular bonds (C18—H18···Cl1i; i: 3/2 - x, -1/2 + y, 3/2 - z) linking adjacent molecules (Table 2 and Fig. 2).

Related literature top

For related literature, see: Lenaerts et al. (2005); Li et al. (2005); Perkins et al. (2005, 2007).

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification.

The title compound was synthesized by modified procedures already reportred in the literature (Li, et al., 2005). When an ethanol solution (10 ml) of 1,10-phenanthroline (0.196 g) was slowly added to an aqueous solution (10 ml) of CuCl2.2H2O (0.171 g), a great amount of precipitate appeared after refluxing. Then an ethanol solution (15 ml) of 2-thenoyltrifluoroactone (0.222 g) was added, and the reaction mixture was kept refluxing until the precipitate was completely dissolved. After filtering, the solution was evaporated slowly at room temperature, and green crystals suitable for X-ray analysis were collected.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions,with Csp2—H = 0.930 Å, constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Metal complexes of 2-thenoyltrifluoroacetone are attractive due to their potential applications in new material design (Lenaerts, et al., 2005; Perkins, et al., 2005, 2007). In this paper, we report a novel Cu complex of 2-thenoyltrifluoroacetone.

A displacement ellipsoid drawing of (I) is shown in Fig. 1. Selected bond lengths are listed in Table 1. The CuII ion exhibits a distorted square pyramidal geometry. The coordination environment of the cation is comprised of two N atoms from 1,10-phenanthroline and two O atoms from 2-thenoyltrifluoroacetone at the basal positions, and one Cl anion at the apical site (Cu1—Cl1: 2.467 (2) Å. There are weak intermolecular bonds (C18—H18···Cl1i; i: 3/2 - x, -1/2 + y, 3/2 - z) linking adjacent molecules (Table 2 and Fig. 2).

For related literature, see: Lenaerts et al. (2005); Li et al. (2005); Perkins et al. (2005, 2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 30% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram viewed down the a axis. H atoms not taking part in H-bonding not shown.
Chlorido(1,10-phenanthroline)[1,1,1-trifluoro-3-(2-thenoyl)acetonato]copper(II) top
Crystal data top
[Cu(C8H4F3O2S)Cl(C12H8N2)]F(000) = 1004
Mr = 500.37Dx = 1.729 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 814 reflections
a = 12.461 (9) Åθ = 2.3–18.8°
b = 13.238 (9) ŵ = 1.43 mm1
c = 12.932 (8) ÅT = 298 K
β = 115.689 (10)°Block, green
V = 1922 (2) Å30.4 × 0.1 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3376 independent reflections
Radiation source: fine-focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 714
Tmin = 0.60, Tmax = 0.94k = 1415
9166 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C8H4F3O2S)Cl(C12H8N2)]V = 1922 (2) Å3
Mr = 500.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.461 (9) ŵ = 1.43 mm1
b = 13.238 (9) ÅT = 298 K
c = 12.932 (8) Å0.4 × 0.1 × 0.04 mm
β = 115.689 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3376 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
2081 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.94Rint = 0.068
9166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
3376 reflectionsΔρmin = 0.31 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.71468 (6)0.01669 (5)0.57227 (6)0.0501 (3)
N10.6585 (4)0.1601 (3)0.5616 (4)0.0478 (11)
N20.7777 (4)0.0686 (3)0.4629 (4)0.0494 (12)
O10.6154 (3)0.0264 (3)0.6471 (3)0.0544 (10)
O20.7311 (3)0.1210 (3)0.5297 (3)0.0590 (11)
Cl10.90480 (13)0.03410 (10)0.74564 (12)0.0541 (4)
C10.6010 (5)0.2048 (4)0.6148 (5)0.0535 (15)
H10.57480.16540.65890.064*
C20.5784 (5)0.3075 (4)0.6072 (5)0.0606 (17)
H20.53860.33600.64650.073*
C30.6144 (5)0.3664 (4)0.5425 (5)0.0642 (19)
H30.59960.43550.53770.077*
C40.6738 (5)0.3234 (4)0.4829 (5)0.0548 (16)
C50.7162 (6)0.3764 (5)0.4130 (6)0.0684 (19)
H50.70020.44520.40080.082*
C60.7791 (6)0.3311 (5)0.3632 (6)0.0720 (19)
H60.80670.36910.31920.086*
C70.8040 (5)0.2238 (5)0.3778 (5)0.0542 (15)
C80.8706 (5)0.1718 (5)0.3331 (5)0.0641 (17)
H80.90290.20590.29040.077*
C90.8890 (5)0.0690 (5)0.3517 (5)0.0664 (18)
H90.93250.03270.32130.080*
C100.8400 (5)0.0217 (5)0.4178 (5)0.0571 (16)
H100.85230.04740.43070.069*
C110.7609 (4)0.1693 (4)0.4442 (4)0.0466 (14)
C120.6948 (5)0.2193 (4)0.4964 (4)0.0475 (14)
C130.7552 (6)0.2949 (4)0.5483 (6)0.0580 (16)
C140.7086 (5)0.1973 (4)0.5779 (5)0.0453 (14)
C150.6530 (4)0.2017 (4)0.6474 (4)0.0445 (13)
H150.64390.26440.67520.053*
C160.6080 (4)0.1150 (4)0.6796 (4)0.0429 (13)
C170.5462 (5)0.1259 (4)0.7522 (4)0.0449 (13)
C180.5205 (4)0.2110 (4)0.7965 (4)0.0466 (14)
H180.54080.27570.78330.056*
C190.4607 (5)0.1909 (4)0.8637 (5)0.0557 (15)
H190.43660.24080.89970.067*
C200.4413 (5)0.0913 (5)0.8711 (5)0.0644 (17)
H200.40270.06490.91250.077*
F10.7280 (4)0.3772 (2)0.5884 (4)0.0920 (13)
F20.8728 (3)0.2922 (3)0.5907 (3)0.0871 (12)
F30.7167 (4)0.3060 (3)0.4371 (3)0.0939 (13)
S10.49607 (15)0.02018 (11)0.79536 (15)0.0645 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0606 (5)0.0418 (4)0.0591 (5)0.0045 (3)0.0365 (4)0.0020 (3)
N10.047 (3)0.048 (3)0.049 (3)0.001 (2)0.022 (2)0.003 (2)
N20.050 (3)0.048 (3)0.054 (3)0.001 (2)0.027 (3)0.002 (2)
O10.066 (3)0.042 (2)0.071 (3)0.0025 (19)0.044 (2)0.0024 (19)
O20.079 (3)0.042 (2)0.076 (3)0.001 (2)0.052 (2)0.0025 (19)
Cl10.0571 (9)0.0510 (9)0.0583 (9)0.0043 (7)0.0288 (8)0.0062 (7)
C10.054 (4)0.050 (4)0.057 (4)0.006 (3)0.025 (3)0.006 (3)
C20.064 (4)0.048 (4)0.062 (4)0.008 (3)0.019 (4)0.013 (3)
C30.059 (4)0.044 (4)0.068 (4)0.005 (3)0.008 (4)0.009 (3)
C40.048 (4)0.043 (3)0.059 (4)0.003 (3)0.009 (3)0.000 (3)
C50.066 (5)0.046 (4)0.076 (5)0.005 (3)0.016 (4)0.015 (3)
C60.072 (5)0.070 (5)0.071 (5)0.019 (4)0.028 (4)0.017 (4)
C70.044 (4)0.067 (4)0.045 (3)0.003 (3)0.012 (3)0.008 (3)
C80.059 (4)0.092 (5)0.043 (4)0.015 (4)0.023 (3)0.007 (3)
C90.048 (4)0.101 (5)0.057 (4)0.006 (4)0.030 (3)0.007 (4)
C100.057 (4)0.063 (4)0.060 (4)0.009 (3)0.034 (3)0.004 (3)
C110.039 (3)0.054 (4)0.041 (3)0.008 (3)0.012 (3)0.002 (3)
C120.038 (3)0.050 (3)0.039 (3)0.004 (3)0.002 (3)0.001 (3)
C130.058 (4)0.049 (4)0.075 (5)0.004 (3)0.036 (4)0.009 (3)
C140.045 (3)0.037 (3)0.048 (3)0.003 (3)0.014 (3)0.002 (3)
C150.049 (4)0.038 (3)0.051 (3)0.003 (3)0.026 (3)0.001 (2)
C160.034 (3)0.049 (3)0.043 (3)0.004 (3)0.014 (3)0.005 (3)
C170.047 (3)0.047 (3)0.041 (3)0.001 (3)0.018 (3)0.003 (3)
C180.043 (3)0.046 (3)0.051 (4)0.003 (3)0.021 (3)0.004 (3)
C190.056 (4)0.061 (4)0.061 (4)0.007 (3)0.036 (3)0.000 (3)
C200.058 (4)0.074 (4)0.075 (4)0.002 (3)0.042 (4)0.011 (3)
F10.135 (4)0.040 (2)0.151 (4)0.002 (2)0.109 (3)0.001 (2)
F20.066 (3)0.074 (2)0.127 (3)0.013 (2)0.048 (3)0.007 (2)
F30.125 (3)0.089 (3)0.075 (3)0.017 (2)0.051 (3)0.024 (2)
S10.0722 (11)0.0507 (9)0.0895 (12)0.0013 (8)0.0529 (10)0.0125 (8)
Geometric parameters (Å, º) top
Cu1—O21.941 (4)C7—C111.396 (8)
Cu1—O11.956 (4)C8—C91.383 (8)
Cu1—N12.007 (4)C8—H80.9300
Cu1—N22.013 (5)C9—C101.395 (8)
Cu1—Cl12.467 (2)C9—H90.9300
N1—C11.328 (7)C10—H100.9300
N1—C121.364 (7)C11—C121.434 (8)
N2—C101.312 (7)C13—F31.312 (7)
N2—C111.355 (6)C13—F11.313 (7)
O1—C161.263 (6)C13—F21.324 (6)
O2—C141.280 (6)C13—C141.533 (7)
C1—C21.383 (7)C14—C151.353 (7)
C1—H10.9300C15—C161.417 (7)
C2—C31.355 (8)C15—H150.9300
C2—H20.9300C16—C171.458 (7)
C3—C41.400 (8)C17—C181.363 (7)
C3—H30.9300C17—S11.721 (5)
C4—C121.399 (7)C18—C191.394 (7)
C4—C51.416 (9)C18—H180.9300
C5—C61.352 (9)C19—C201.350 (7)
C5—H50.9300C19—H190.9300
C6—C71.448 (8)C20—S11.700 (6)
C6—H60.9300C20—H200.9300
C7—C81.383 (8)
O2—Cu1—O191.93 (16)C9—C8—H8120.0
O2—Cu1—N1161.00 (17)C8—C9—C10117.7 (6)
O1—Cu1—N191.92 (18)C8—C9—H9121.1
O2—Cu1—N289.98 (18)C10—C9—H9121.1
O1—Cu1—N2165.85 (17)N2—C10—C9124.0 (6)
N1—Cu1—N281.94 (19)N2—C10—H10118.0
O2—Cu1—Cl199.65 (12)C9—C10—H10118.0
O1—Cu1—Cl198.15 (14)N2—C11—C7123.2 (5)
N1—Cu1—Cl198.21 (13)N2—C11—C12116.5 (5)
N2—Cu1—Cl195.34 (14)C7—C11—C12120.2 (5)
C1—N1—C12117.5 (5)N1—C12—C4123.3 (6)
C1—N1—Cu1129.5 (4)N1—C12—C11115.9 (5)
C12—N1—Cu1112.8 (4)C4—C12—C11120.7 (6)
C10—N2—C11117.5 (5)F3—C13—F1107.8 (5)
C10—N2—Cu1129.6 (4)F3—C13—F2105.7 (5)
C11—N2—Cu1112.6 (4)F1—C13—F2106.7 (5)
C16—O1—Cu1126.1 (3)F3—C13—C14111.7 (5)
C14—O2—Cu1122.0 (4)F1—C13—C14114.2 (5)
N1—C1—C2122.7 (6)F2—C13—C14110.2 (5)
N1—C1—H1118.6O2—C14—C15129.9 (5)
C2—C1—H1118.6O2—C14—C13110.8 (5)
C3—C2—C1119.8 (6)C15—C14—C13119.2 (5)
C3—C2—H2120.1C14—C15—C16122.8 (5)
C1—C2—H2120.1C14—C15—H15118.6
C2—C3—C4120.1 (6)C16—C15—H15118.6
C2—C3—H3119.9O1—C16—C15124.0 (5)
C4—C3—H3119.9O1—C16—C17116.3 (5)
C12—C4—C3116.5 (6)C15—C16—C17119.7 (5)
C12—C4—C5117.8 (6)C18—C17—C16129.7 (5)
C3—C4—C5125.7 (6)C18—C17—S1110.6 (4)
C6—C5—C4122.5 (6)C16—C17—S1119.7 (4)
C6—C5—H5118.7C17—C18—C19113.0 (5)
C4—C5—H5118.7C17—C18—H18123.5
C5—C6—C7120.6 (6)C19—C18—H18123.5
C5—C6—H6119.7C20—C19—C18113.0 (5)
C7—C6—H6119.7C20—C19—H19123.5
C8—C7—C11117.4 (6)C18—C19—H19123.5
C8—C7—C6124.6 (6)C19—C20—S1111.8 (5)
C11—C7—C6118.0 (6)C19—C20—H20124.1
C7—C8—C9120.1 (6)S1—C20—H20124.1
C7—C8—H8120.0C20—S1—C1791.6 (3)
O2—Cu1—N1—C1116.2 (6)C10—N2—C11—C12178.6 (5)
O1—Cu1—N1—C114.6 (5)Cu1—N2—C11—C124.6 (6)
N2—Cu1—N1—C1178.1 (5)C8—C7—C11—N22.3 (8)
Cl1—Cu1—N1—C183.9 (5)C6—C7—C11—N2179.4 (5)
O2—Cu1—N1—C1269.4 (7)C8—C7—C11—C12177.8 (5)
O1—Cu1—N1—C12171.0 (3)C6—C7—C11—C120.5 (8)
N2—Cu1—N1—C123.8 (3)C1—N1—C12—C40.4 (7)
Cl1—Cu1—N1—C1290.5 (3)Cu1—N1—C12—C4175.4 (4)
O2—Cu1—N2—C1019.5 (5)C1—N1—C12—C11177.5 (4)
O1—Cu1—N2—C10117.4 (7)Cu1—N1—C12—C112.5 (5)
N1—Cu1—N2—C10177.7 (5)C3—C4—C12—N11.3 (8)
Cl1—Cu1—N2—C1080.1 (5)C5—C4—C12—N1179.9 (5)
O2—Cu1—N2—C11167.3 (4)C3—C4—C12—C11176.5 (5)
O1—Cu1—N2—C1169.5 (8)C5—C4—C12—C112.1 (8)
N1—Cu1—N2—C114.6 (3)N2—C11—C12—N11.5 (7)
Cl1—Cu1—N2—C1193.0 (3)C7—C11—C12—N1178.7 (4)
O2—Cu1—O1—C1618.6 (4)N2—C11—C12—C4179.4 (5)
N1—Cu1—O1—C16180.0 (4)C7—C11—C12—C40.7 (8)
N2—Cu1—O1—C16116.2 (7)Cu1—O2—C14—C1512.5 (8)
Cl1—Cu1—O1—C1681.5 (4)Cu1—O2—C14—C13167.2 (3)
O1—Cu1—O2—C1417.6 (4)F3—C13—C14—O252.9 (7)
N1—Cu1—O2—C14119.2 (6)F1—C13—C14—O2175.5 (5)
N2—Cu1—O2—C14176.4 (4)F2—C13—C14—O264.3 (7)
Cl1—Cu1—O2—C1481.0 (4)F3—C13—C14—C15127.4 (6)
C12—N1—C1—C20.7 (8)F1—C13—C14—C154.8 (8)
Cu1—N1—C1—C2173.4 (4)F2—C13—C14—C15115.3 (6)
N1—C1—C2—C30.7 (9)O2—C14—C15—C160.1 (9)
C1—C2—C3—C40.3 (9)C13—C14—C15—C16179.6 (5)
C2—C3—C4—C121.3 (8)Cu1—O1—C16—C1512.7 (7)
C2—C3—C4—C5179.7 (6)Cu1—O1—C16—C17168.8 (3)
C12—C4—C5—C62.4 (9)C14—C15—C16—O10.1 (8)
C3—C4—C5—C6176.0 (6)C14—C15—C16—C17178.3 (5)
C4—C5—C6—C71.3 (10)O1—C16—C17—C18177.3 (5)
C5—C6—C7—C8178.0 (6)C15—C16—C17—C181.2 (8)
C5—C6—C7—C110.2 (9)O1—C16—C17—S13.7 (6)
C11—C7—C8—C92.0 (8)C15—C16—C17—S1177.8 (4)
C6—C7—C8—C9179.8 (5)C16—C17—C18—C19179.4 (5)
C7—C8—C9—C101.0 (9)S1—C17—C18—C190.3 (6)
C11—N2—C10—C90.3 (8)C17—C18—C19—C200.3 (7)
Cu1—N2—C10—C9173.2 (4)C18—C19—C20—S10.1 (7)
C8—C9—C10—N20.1 (9)C19—C20—S1—C170.1 (5)
C10—N2—C11—C71.5 (8)C18—C17—S1—C200.2 (4)
Cu1—N2—C11—C7175.5 (4)C16—C17—S1—C20179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···Cl1i0.932.683.604 (6)177
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H4F3O2S)Cl(C12H8N2)]
Mr500.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.461 (9), 13.238 (9), 12.932 (8)
β (°) 115.689 (10)
V3)1922 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.4 × 0.1 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.60, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
9166, 3376, 2081
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 1.00
No. of reflections3376
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected bond lengths (Å) top
Cu1—O21.941 (4)Cu1—N22.013 (5)
Cu1—O11.956 (4)Cu1—Cl12.467 (2)
Cu1—N12.007 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···Cl1i0.932.683.604 (6)176.7
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shanxi Province for financial support (grant No. 20041012).

References

First citationBruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLenaerts, P., Storms, A., Mullens, J., D'Haen, J., Goerller-Walrand, C., Binnemans, K. & Driesen, K. (2005). Chem. Mater. 17, 5194–5201.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Xu, D., Wu, J. & Chiang, M. (2005). J. Chem. Crystallogr. 45, 615–619.  Web of Science CSD CrossRef Google Scholar
First citationPerkins, W. J., Maxwell, T., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m2047–m2049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerkins, W. J., Maxwell, T., Williams, K. B., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2007). Acta Cryst. E63, m423–m425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds