organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2,2-Di­methyl-4,5-bis­­(3-methyl-2-thioxo-2,3-di­hydro-1H-imidazol-1-yl­meth­yl)-1,3-dioxolane

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 11 October 2007; accepted 5 November 2007; online 6 December 2007)

In the chiral title compound, C15H22N4O2S2, there are two mol­ecules in the asymmetric unit with distinctly different conformations, as quanti­fied by torsion angles. The dihedral angles between the thio­imidazole rings are 81.59 (5) and 67.04 (4)°. One mol­ecule exhibits local twofold rotation symmetry, while the other displays no local symmetry. Inter­molecular C—H⋯O and C—H⋯S inter­actions are observed.

Related literature

For background, see: Marshall et al. (2004[Marshall, C., Ward, M. F. & Harrison, W. T. A. (2004). Tetrahedron Lett. 45, 5703-5706.]); Williamson et al. (2006[Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2006). J. Chem. Crystallogr. 36, 277-282.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22N4O2S2

  • Mr = 354.49

  • Monoclinic, P 21

  • a = 10.462 (2) Å

  • b = 8.6043 (17) Å

  • c = 20.249 (4) Å

  • β = 103.19 (3)°

  • V = 1774.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 123 (2) K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 13494 measured reflections

  • 6651 independent reflections

  • 6047 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.02

  • 6651 reflections

  • 423 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2303 Friedel pairs

  • Flack parameter: 0.06 (5)

Table 1
Selected torsion angles (°)

C2—N2—C5—C6 109.2 (2)
C7—C11—N3—C12 104.4 (2)
C21—C20—N6—C17 −75.4 (3)
C25—C26—N7—C27 −72.9 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S4 0.95 2.86 3.797 (2) 170
C5—H5B⋯O4 0.99 2.50 3.470 (3) 166
C11—H11B⋯O3i 0.99 2.58 3.500 (3) 154
C13—H13⋯S3i 0.95 2.83 3.715 (2) 156
C28—H28⋯S1ii 0.95 2.87 3.749 (2) 155
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), HKL SCALEPACK and SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing investigations of chiral, C2-symmetric catalysts (Marshall et al., 2004), the title compound, C15H22N4O2S2, an intermediate in such materials, has been synthesized and structurally characterized.

There are two molecules in the asymmetric unit (Figs. 1 & 2), both of which show the same, expected, atomic chirality: atoms C6, C7, C21 and C25 all have an S configuration. However, their conformations are distinctly different, as indicated by a comparison of C—C—N—C side-chain torsion angles for the two molecules (Table 1). The dihedral angles between the thio-imidazole rings are 81.59 (5)° and 67.04 (4)°, for the C1 and C16-containing molecules, respectively. This means that the C1 molecule shows no local symmetry, whereas the C16 molecule possesses local C2 symmetry about the axis running through C22 and the mid-point of the C21—C25 bond. The thio-imidazole rings of both molecules display typical geometrical parameters, with the C—S bond lengths significantly longer than that of an isolated C?S double bond (~1.60 Å), which can be correlated with the contribution of resonance structures involving the lone pair electrons of the adjacent N atoms (Williamson et al., 2006). Otherwise, the geometries of the two molecules may be regarded as normal.

The crystal packing exhibits intermolecular C—H···O and C—H···S contacts (Table 2), giving pseudo (100) sheets of molecules in the crystal (Fig. 3).

Related literature top

For background, see: Marshall et al. (2004); Williamson et al. (2006).

Experimental top

A mixture of (4S,5S)-4,5-bis(1-methylimidazolium-3-methyl)-2,2-dimethyl-1,3- dioxolane dibromide (0.67 g, 1.48 mmol), sulfur (0.14 g, 4.45 mmol), methanol (17 ml), pyridine (1.5 ml) and 1,8-diazabicyclo[5.4.0]undec-7-ene (1 g, 6.53 mmol) was heated at 338 K for 18 h. Once cooled to room temperature, water (50 ml) was added, and the mixture was extracted with chloroform (3 × 20 ml). The combined extracts were dried over magnesium sulfate, filtered and concentrated under reduced pressure to leave a brown residue. The crude product was purified by column chromatography (SiO2, ethyl acetate, loaded as a dichloromethane solution) to give the dithione (0.37 g, 70%) as a colourless solid which was recrystallized from ethanol to give colourless blocks (m.p. 442 K).

Refinement top

The H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes to give the best fit to the electron density.

Structure description top

As part of our ongoing investigations of chiral, C2-symmetric catalysts (Marshall et al., 2004), the title compound, C15H22N4O2S2, an intermediate in such materials, has been synthesized and structurally characterized.

There are two molecules in the asymmetric unit (Figs. 1 & 2), both of which show the same, expected, atomic chirality: atoms C6, C7, C21 and C25 all have an S configuration. However, their conformations are distinctly different, as indicated by a comparison of C—C—N—C side-chain torsion angles for the two molecules (Table 1). The dihedral angles between the thio-imidazole rings are 81.59 (5)° and 67.04 (4)°, for the C1 and C16-containing molecules, respectively. This means that the C1 molecule shows no local symmetry, whereas the C16 molecule possesses local C2 symmetry about the axis running through C22 and the mid-point of the C21—C25 bond. The thio-imidazole rings of both molecules display typical geometrical parameters, with the C—S bond lengths significantly longer than that of an isolated C?S double bond (~1.60 Å), which can be correlated with the contribution of resonance structures involving the lone pair electrons of the adjacent N atoms (Williamson et al., 2006). Otherwise, the geometries of the two molecules may be regarded as normal.

The crystal packing exhibits intermolecular C—H···O and C—H···S contacts (Table 2), giving pseudo (100) sheets of molecules in the crystal (Fig. 3).

For background, see: Marshall et al. (2004); Williamson et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997), HKL SCALEPACK (Otwinowski & Minor 1997) and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structures of C1 molecule showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the molecular structures of C16 molecule of showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius.
[Figure 3] Fig. 3. Unit-cell packing with H atoms omitted for clarity.
(4S,5S)-2,2-Dimethyl-4,5-bis(3-methyl-2-thioxo-2,3-dihydro-1H-\ imidazol-1-ylmethyl)-1,3-dioxolane top
Crystal data top
C15H22N4O2S2F(000) = 752
Mr = 354.49Dx = 1.327 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9330 reflections
a = 10.462 (2) Åθ = 2.9–27.5°
b = 8.6043 (17) ŵ = 0.31 mm1
c = 20.249 (4) ÅT = 123 K
β = 103.19 (3)°Block, colourless
V = 1774.7 (6) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6047 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω and φ scansh = 1313
13494 measured reflectionsk = 1011
6651 independent reflectionsl = 2426
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6651 reflectionsΔρmax = 0.33 e Å3
423 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), with 2303 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (5)
Crystal data top
C15H22N4O2S2V = 1774.7 (6) Å3
Mr = 354.49Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.462 (2) ŵ = 0.31 mm1
b = 8.6043 (17) ÅT = 123 K
c = 20.249 (4) Å0.18 × 0.16 × 0.16 mm
β = 103.19 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6047 reflections with I > 2σ(I)
13494 measured reflectionsRint = 0.049
6651 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.43 e Å3
6651 reflectionsAbsolute structure: Flack (1983), with 2303 Friedel pairs
423 parametersAbsolute structure parameter: 0.06 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08821 (5)1.00232 (6)0.11169 (3)0.02403 (14)
S20.38790 (5)0.99782 (6)0.37475 (3)0.02505 (14)
O10.36101 (14)0.55181 (18)0.22141 (7)0.0253 (4)
O20.17411 (15)0.52668 (19)0.26106 (8)0.0277 (4)
N10.14301 (16)0.8059 (2)0.01597 (9)0.0217 (4)
N20.27338 (16)0.7767 (2)0.11545 (8)0.0194 (4)
N30.20925 (15)0.7609 (2)0.36360 (8)0.0200 (4)
N40.33053 (16)0.7879 (2)0.46509 (9)0.0218 (4)
C10.0455 (2)0.8683 (3)0.04072 (10)0.0272 (5)
H1A0.07780.85970.08230.041*
H1B0.02930.97780.03210.041*
H1C0.03650.80950.04590.041*
C20.16862 (19)0.8611 (2)0.08012 (10)0.0186 (4)
C30.2295 (2)0.6852 (3)0.01103 (11)0.0238 (5)
H30.23110.62620.02840.029*
C40.3105 (2)0.6679 (3)0.07280 (11)0.0264 (5)
H40.38000.59480.08490.032*
C50.34737 (19)0.8156 (3)0.18340 (10)0.0211 (5)
H5A0.32280.92170.19480.025*
H5B0.44210.81660.18360.025*
C60.32494 (19)0.7044 (3)0.23752 (10)0.0196 (4)
H60.38000.73640.28260.024*
C70.18308 (19)0.6860 (3)0.24267 (10)0.0205 (5)
H70.12420.70390.19690.025*
C80.2924 (2)0.4465 (3)0.25547 (11)0.0282 (5)
C90.2571 (3)0.3041 (3)0.21235 (13)0.0435 (6)
H9A0.20920.23130.23500.065*
H9B0.33740.25440.20550.065*
H9C0.20170.33370.16830.065*
C100.3730 (2)0.4109 (3)0.32569 (11)0.0332 (5)
H10A0.32130.34670.35000.050*
H10B0.39730.50830.35050.050*
H10C0.45260.35470.32220.050*
C110.1421 (2)0.7934 (3)0.29347 (10)0.0226 (5)
H11A0.16050.90210.28250.027*
H11B0.04620.78360.28900.027*
C120.30930 (19)0.8479 (2)0.40141 (10)0.0189 (4)
C130.1689 (2)0.6502 (3)0.40400 (11)0.0257 (5)
H130.10070.57640.38980.031*
C140.2442 (2)0.6661 (3)0.46713 (12)0.0266 (5)
H140.23930.60570.50570.032*
C150.4273 (2)0.8457 (3)0.52392 (11)0.0284 (5)
H15A0.38980.84300.56400.043*
H15B0.45110.95280.51550.043*
H15C0.50580.78000.53170.043*
S30.87712 (5)0.39985 (7)0.39791 (3)0.02640 (14)
S40.60998 (5)0.40522 (7)0.10499 (3)0.02620 (14)
O30.81983 (14)0.88017 (18)0.30275 (7)0.0240 (3)
O40.67952 (14)0.88153 (18)0.19686 (7)0.0240 (3)
N50.86003 (17)0.6053 (2)0.49936 (9)0.0223 (4)
N60.73945 (16)0.6687 (2)0.40117 (9)0.0205 (4)
N70.75542 (16)0.6655 (2)0.09850 (9)0.0208 (4)
N80.63092 (17)0.6032 (2)0.00141 (9)0.0217 (4)
C160.9544 (2)0.5263 (3)0.55250 (11)0.0275 (5)
H16A0.92450.53060.59490.041*
H16B1.04000.57740.55880.041*
H16C0.96220.41760.53960.041*
C170.8268 (2)0.5597 (3)0.43322 (11)0.0203 (5)
C180.7935 (2)0.7417 (3)0.50761 (12)0.0263 (5)
H180.79980.79710.54880.032*
C190.7189 (2)0.7803 (3)0.44683 (11)0.0253 (5)
H190.66250.86790.43700.030*
C200.68137 (19)0.6688 (3)0.32881 (10)0.0229 (5)
H20A0.60370.73790.31950.027*
H20B0.65140.56240.31430.027*
C210.77773 (19)0.7232 (3)0.28799 (10)0.0204 (4)
H210.85620.65340.29770.024*
C220.74960 (16)0.9822 (3)0.25008 (9)0.0227 (5)
C230.6504 (2)1.0807 (3)0.27491 (13)0.0309 (6)
H23A0.69581.14570.31280.046*
H23B0.58741.01300.29010.046*
H23C0.60361.14710.23790.046*
C240.8486 (2)1.0810 (3)0.22528 (13)0.0310 (6)
H24A0.89831.14370.26290.046*
H24B0.80271.14970.18890.046*
H24C0.90901.01360.20790.046*
C250.71825 (19)0.7234 (3)0.21188 (10)0.0204 (4)
H250.63860.65540.20200.024*
C260.8143 (2)0.6675 (3)0.17078 (10)0.0224 (5)
H26A0.89190.73670.17950.027*
H26B0.84450.56140.18570.027*
C270.66460 (19)0.5591 (3)0.06785 (11)0.0202 (4)
C280.7787 (2)0.7730 (3)0.05187 (12)0.0256 (5)
H280.83820.85800.06080.031*
C290.7014 (2)0.7348 (3)0.00841 (12)0.0258 (5)
H290.69580.78790.05010.031*
C300.5324 (2)0.5260 (3)0.05076 (10)0.0264 (5)
H30A0.55880.53080.09410.040*
H30B0.44760.57820.05520.040*
H30C0.52450.41710.03810.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (3)0.0177 (3)0.0285 (3)0.0034 (3)0.0029 (2)0.0032 (3)
S20.0272 (3)0.0182 (3)0.0301 (3)0.0057 (3)0.0073 (2)0.0003 (3)
O10.0306 (8)0.0188 (9)0.0259 (8)0.0057 (6)0.0048 (6)0.0006 (6)
O20.0298 (8)0.0205 (9)0.0319 (8)0.0071 (7)0.0054 (7)0.0011 (7)
N10.0245 (9)0.0183 (9)0.0218 (9)0.0009 (8)0.0039 (7)0.0002 (8)
N20.0185 (8)0.0178 (10)0.0219 (9)0.0010 (7)0.0048 (7)0.0012 (8)
N30.0166 (8)0.0209 (10)0.0230 (9)0.0018 (7)0.0057 (7)0.0021 (8)
N40.0252 (9)0.0190 (10)0.0214 (9)0.0005 (8)0.0056 (7)0.0012 (8)
C10.0301 (12)0.0260 (13)0.0222 (11)0.0031 (10)0.0008 (9)0.0006 (9)
C20.0182 (10)0.0139 (11)0.0234 (10)0.0045 (8)0.0039 (8)0.0005 (8)
C30.0295 (11)0.0179 (11)0.0266 (11)0.0019 (9)0.0118 (9)0.0061 (9)
C40.0279 (11)0.0212 (12)0.0321 (12)0.0046 (10)0.0111 (10)0.0013 (10)
C50.0173 (10)0.0219 (11)0.0229 (10)0.0015 (9)0.0020 (8)0.0021 (9)
C60.0169 (10)0.0185 (11)0.0226 (10)0.0039 (8)0.0028 (8)0.0008 (9)
C70.0167 (10)0.0205 (12)0.0225 (10)0.0029 (9)0.0007 (8)0.0036 (9)
C80.0391 (13)0.0186 (12)0.0249 (11)0.0020 (11)0.0031 (9)0.0001 (9)
C90.0619 (17)0.0253 (14)0.0379 (14)0.0018 (13)0.0005 (12)0.0070 (12)
C100.0450 (13)0.0236 (12)0.0285 (11)0.0000 (11)0.0034 (10)0.0041 (10)
C110.0170 (10)0.0239 (12)0.0253 (11)0.0021 (9)0.0014 (8)0.0023 (10)
C120.0181 (10)0.0164 (11)0.0228 (10)0.0033 (8)0.0059 (8)0.0005 (9)
C130.0278 (11)0.0199 (12)0.0310 (12)0.0052 (9)0.0098 (9)0.0009 (10)
C140.0339 (12)0.0181 (12)0.0310 (12)0.0002 (10)0.0142 (10)0.0059 (10)
C150.0286 (12)0.0314 (14)0.0229 (11)0.0019 (10)0.0010 (9)0.0035 (10)
S30.0292 (3)0.0172 (3)0.0332 (3)0.0004 (3)0.0078 (2)0.0030 (2)
S40.0305 (3)0.0180 (3)0.0292 (3)0.0008 (3)0.0048 (2)0.0018 (2)
O30.0226 (8)0.0207 (9)0.0260 (8)0.0050 (7)0.0001 (6)0.0003 (7)
O40.0235 (8)0.0215 (9)0.0243 (7)0.0050 (7)0.0000 (6)0.0027 (7)
N50.0254 (9)0.0160 (10)0.0253 (9)0.0001 (8)0.0056 (8)0.0002 (8)
N60.0199 (8)0.0200 (10)0.0221 (9)0.0016 (8)0.0057 (7)0.0013 (8)
N70.0191 (8)0.0209 (10)0.0223 (9)0.0007 (8)0.0044 (7)0.0029 (8)
N80.0244 (9)0.0175 (10)0.0219 (9)0.0012 (8)0.0028 (7)0.0000 (8)
C160.0285 (11)0.0221 (13)0.0291 (11)0.0027 (10)0.0010 (9)0.0059 (10)
C170.0190 (10)0.0160 (11)0.0263 (11)0.0039 (8)0.0060 (9)0.0025 (9)
C180.0306 (11)0.0218 (13)0.0279 (11)0.0010 (10)0.0095 (9)0.0026 (10)
C190.0249 (11)0.0217 (12)0.0308 (12)0.0013 (9)0.0096 (9)0.0017 (10)
C200.0193 (10)0.0235 (12)0.0253 (11)0.0030 (9)0.0040 (9)0.0014 (9)
C210.0184 (10)0.0190 (11)0.0227 (11)0.0001 (9)0.0025 (8)0.0002 (9)
C220.0222 (11)0.0219 (14)0.0230 (11)0.0011 (8)0.0031 (9)0.0005 (8)
C230.0268 (12)0.0281 (14)0.0387 (13)0.0025 (10)0.0091 (11)0.0107 (11)
C240.0272 (12)0.0279 (13)0.0388 (13)0.0041 (10)0.0097 (11)0.0093 (11)
C250.0186 (10)0.0178 (11)0.0236 (11)0.0005 (8)0.0023 (8)0.0029 (9)
C260.0184 (10)0.0250 (12)0.0218 (10)0.0031 (9)0.0007 (8)0.0029 (9)
C270.0202 (10)0.0154 (11)0.0252 (11)0.0034 (8)0.0055 (9)0.0028 (9)
C280.0222 (11)0.0230 (13)0.0328 (12)0.0003 (9)0.0089 (9)0.0011 (10)
C290.0265 (11)0.0218 (13)0.0299 (12)0.0003 (10)0.0078 (9)0.0021 (10)
C300.0309 (11)0.0199 (12)0.0252 (11)0.0017 (10)0.0003 (9)0.0064 (9)
Geometric parameters (Å, º) top
S1—C21.685 (2)S3—C171.689 (2)
S2—C121.684 (2)S4—C271.686 (2)
O1—C61.425 (3)O3—C211.431 (3)
O1—C81.427 (3)O3—C221.446 (3)
O2—C71.429 (3)O4—C251.433 (3)
O2—C81.444 (3)O4—C221.445 (3)
N1—C21.351 (3)N5—C171.362 (3)
N1—C31.396 (3)N5—C181.394 (3)
N1—C11.454 (3)N5—C161.452 (3)
N2—C21.372 (3)N6—C171.366 (3)
N2—C41.387 (3)N6—C191.384 (3)
N2—C51.456 (2)N6—C201.452 (3)
N3—C121.370 (3)N7—C271.363 (3)
N3—C131.383 (3)N7—C281.383 (3)
N3—C111.460 (3)N7—C261.453 (3)
N4—C121.359 (3)N8—C271.364 (3)
N4—C141.390 (3)N8—C291.390 (3)
N4—C151.463 (3)N8—C301.457 (3)
C1—H1A0.980C16—H16A0.980
C1—H1B0.980C16—H16B0.980
C1—H1C0.980C16—H16C0.980
C3—C41.349 (3)C18—C191.340 (3)
C3—H30.950C18—H180.950
C4—H40.950C19—H190.950
C5—C61.513 (3)C20—C211.516 (3)
C5—H5A0.990C20—H20A0.990
C5—H5B0.990C20—H20B0.990
C6—C71.520 (3)C21—C251.525 (3)
C6—H61.000C21—H211.000
C7—C111.516 (3)C22—C241.512 (3)
C7—H71.000C22—C231.512 (3)
C8—C91.501 (3)C23—H23A0.980
C8—C101.510 (3)C23—H23B0.980
C9—H9A0.980C23—H23C0.980
C9—H9B0.980C24—H24A0.980
C9—H9C0.980C24—H24B0.980
C10—H10A0.980C24—H24C0.980
C10—H10B0.980C25—C261.521 (3)
C10—H10C0.980C25—H251.000
C11—H11A0.990C26—H26A0.990
C11—H11B0.990C26—H26B0.990
C13—C141.347 (3)C28—C291.342 (3)
C13—H130.950C28—H280.950
C14—H140.950C29—H290.950
C15—H15A0.980C30—H30A0.980
C15—H15B0.980C30—H30B0.980
C15—H15C0.980C30—H30C0.980
C6—O1—C8106.59 (16)C21—O3—C22109.79 (16)
C7—O2—C8109.22 (16)C25—O4—C22109.89 (16)
C2—N1—C3109.93 (17)C17—N5—C18109.75 (18)
C2—N1—C1125.35 (19)C17—N5—C16124.85 (19)
C3—N1—C1124.62 (18)C18—N5—C16125.36 (19)
C2—N2—C4109.65 (17)C17—N6—C19110.39 (18)
C2—N2—C5124.06 (17)C17—N6—C20124.06 (18)
C4—N2—C5125.43 (17)C19—N6—C20125.51 (18)
C12—N3—C13110.06 (17)C27—N7—C28110.58 (18)
C12—N3—C11125.14 (18)C27—N7—C26123.91 (18)
C13—N3—C11124.29 (18)C28—N7—C26125.46 (18)
C12—N4—C14110.34 (18)C27—N8—C29109.96 (18)
C12—N4—C15125.21 (19)C27—N8—C30124.70 (19)
C14—N4—C15124.42 (19)C29—N8—C30125.32 (19)
N1—C1—H1A109.5N5—C16—H16A109.5
N1—C1—H1B109.5N5—C16—H16B109.5
H1A—C1—H1B109.5H16A—C16—H16B109.5
N1—C1—H1C109.5N5—C16—H16C109.5
H1A—C1—H1C109.5H16A—C16—H16C109.5
H1B—C1—H1C109.5H16B—C16—H16C109.5
N1—C2—N2105.93 (18)N5—C17—N6105.20 (18)
N1—C2—S1127.72 (16)N5—C17—S3128.06 (17)
N2—C2—S1126.35 (16)N6—C17—S3126.71 (16)
C4—C3—N1107.20 (19)C19—C18—N5107.5 (2)
C4—C3—H3126.4C19—C18—H18126.2
N1—C3—H3126.4N5—C18—H18126.2
C3—C4—N2107.28 (19)C18—C19—N6107.1 (2)
C3—C4—H4126.4C18—C19—H19126.4
N2—C4—H4126.4N6—C19—H19126.4
N2—C5—C6113.73 (18)N6—C20—C21111.90 (17)
N2—C5—H5A108.8N6—C20—H20A109.2
C6—C5—H5A108.8C21—C20—H20A109.2
N2—C5—H5B108.8N6—C20—H20B109.2
C6—C5—H5B108.8C21—C20—H20B109.2
H5A—C5—H5B107.7H20A—C20—H20B107.9
O1—C6—C5108.90 (17)O3—C21—C20112.87 (18)
O1—C6—C7103.50 (15)O3—C21—C25104.21 (15)
C5—C6—C7115.53 (16)C20—C21—C25112.49 (18)
O1—C6—H6109.6O3—C21—H21109.0
C5—C6—H6109.6C20—C21—H21109.0
C7—C6—H6109.6C25—C21—H21109.0
O2—C7—C11111.25 (17)O4—C22—O3105.8 (2)
O2—C7—C6103.95 (16)O4—C22—C24111.03 (16)
C11—C7—C6114.51 (17)O3—C22—C24108.37 (16)
O2—C7—H7109.0O4—C22—C23108.29 (16)
C11—C7—H7109.0O3—C22—C23111.51 (16)
C6—C7—H7109.0C24—C22—C23111.7 (2)
O1—C8—O2105.64 (18)C22—C23—H23A109.5
O1—C8—C9108.73 (19)C22—C23—H23B109.5
O2—C8—C9109.5 (2)H23A—C23—H23B109.5
O1—C8—C10110.47 (18)C22—C23—H23C109.5
O2—C8—C10109.11 (18)H23A—C23—H23C109.5
C9—C8—C10113.1 (2)H23B—C23—H23C109.5
C8—C9—H9A109.5C22—C24—H24A109.5
C8—C9—H9B109.5C22—C24—H24B109.5
H9A—C9—H9B109.5H24A—C24—H24B109.5
C8—C9—H9C109.5C22—C24—H24C109.5
H9A—C9—H9C109.5H24A—C24—H24C109.5
H9B—C9—H9C109.5H24B—C24—H24C109.5
C8—C10—H10A109.5O4—C25—C26111.97 (18)
C8—C10—H10B109.5O4—C25—C21104.23 (15)
H10A—C10—H10B109.5C26—C25—C21112.61 (18)
C8—C10—H10C109.5O4—C25—H25109.3
H10A—C10—H10C109.5C26—C25—H25109.3
H10B—C10—H10C109.5C21—C25—H25109.3
N3—C11—C7113.29 (18)N7—C26—C25111.96 (17)
N3—C11—H11A108.9N7—C26—H26A109.2
C7—C11—H11A108.9C25—C26—H26A109.2
N3—C11—H11B108.9N7—C26—H26B109.2
C7—C11—H11B108.9C25—C26—H26B109.2
H11A—C11—H11B107.7H26A—C26—H26B107.9
N4—C12—N3105.17 (17)N7—C27—N8105.00 (18)
N4—C12—S2127.51 (17)N7—C27—S4126.63 (16)
N3—C12—S2127.32 (16)N8—C27—S4128.35 (17)
C14—C13—N3107.47 (19)C29—C28—N7107.1 (2)
C14—C13—H13126.3C29—C28—H28126.5
N3—C13—H13126.3N7—C28—H28126.5
C13—C14—N4106.9 (2)C28—C29—N8107.4 (2)
C13—C14—H14126.5C28—C29—H29126.3
N4—C14—H14126.5N8—C29—H29126.3
N4—C15—H15A109.5N8—C30—H30A109.5
N4—C15—H15B109.5N8—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
N4—C15—H15C109.5N8—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
C3—N1—C2—N21.1 (2)C18—N5—C17—N60.1 (2)
C1—N1—C2—N2175.43 (18)C16—N5—C17—N6178.01 (18)
C3—N1—C2—S1177.95 (15)C18—N5—C17—S3178.07 (16)
C1—N1—C2—S15.5 (3)C16—N5—C17—S34.0 (3)
C4—N2—C2—N10.9 (2)C19—N6—C17—N50.0 (2)
C5—N2—C2—N1168.98 (18)C20—N6—C17—N5177.77 (18)
C4—N2—C2—S1178.19 (16)C19—N6—C17—S3178.02 (16)
C5—N2—C2—S111.9 (3)C20—N6—C17—S34.2 (3)
C2—N1—C3—C40.9 (2)C17—N5—C18—C190.1 (3)
C1—N1—C3—C4175.6 (2)C16—N5—C18—C19178.1 (2)
N1—C3—C4—N20.3 (2)N5—C18—C19—N60.1 (2)
C2—N2—C4—C30.3 (2)C17—N6—C19—C180.1 (2)
C5—N2—C4—C3169.37 (19)C20—N6—C19—C18177.65 (19)
C2—N2—C5—C6109.2 (2)C21—C20—N6—C1775.4 (3)
C7—C11—N3—C12104.4 (2)C25—C26—N7—C2772.9 (3)
C4—N2—C5—C682.5 (2)C19—N6—C20—C21102.0 (2)
C8—O1—C6—C5157.40 (16)C22—O3—C21—C20101.23 (19)
C8—O1—C6—C733.99 (19)C22—O3—C21—C2521.1 (2)
N2—C5—C6—O158.9 (2)N6—C20—C21—O362.6 (2)
N2—C5—C6—C757.0 (2)N6—C20—C21—C25179.80 (17)
C8—O2—C7—C11133.47 (17)C25—O4—C22—O37.34 (18)
C8—O2—C7—C69.7 (2)C25—O4—C22—C24110.0 (2)
O1—C6—C7—O226.5 (2)C25—O4—C22—C23127.0 (2)
C5—C6—C7—O2145.48 (17)C21—O3—C22—O49.39 (18)
O1—C6—C7—C11148.13 (17)C21—O3—C22—C24128.53 (19)
C5—C6—C7—C1192.9 (2)C21—O3—C22—C23108.1 (2)
C6—O1—C8—O228.40 (19)C22—O4—C25—C26102.18 (19)
C6—O1—C8—C9145.9 (2)C22—O4—C25—C2119.8 (2)
C6—O1—C8—C1089.5 (2)O3—C21—C25—O424.7 (2)
C7—O2—C8—O110.7 (2)C20—C21—C25—O497.95 (19)
C7—O2—C8—C9127.6 (2)O3—C21—C25—C2696.94 (19)
C7—O2—C8—C10108.05 (19)C20—C21—C25—C26140.5 (2)
C13—N3—C11—C784.7 (2)C28—N7—C26—C25104.3 (2)
O2—C7—C11—N351.3 (2)O4—C25—C26—N764.0 (2)
C6—C7—C11—N366.2 (2)C21—C25—C26—N7178.92 (17)
C14—N4—C12—N30.5 (2)C28—N7—C27—N80.5 (2)
C15—N4—C12—N3178.67 (19)C26—N7—C27—N8177.06 (18)
C14—N4—C12—S2178.97 (16)C28—N7—C27—S4178.30 (16)
C15—N4—C12—S20.8 (3)C26—N7—C27—S44.1 (3)
C13—N3—C12—N40.6 (2)C29—N8—C27—N70.4 (2)
C11—N3—C12—N4172.64 (18)C30—N8—C27—N7177.74 (18)
C13—N3—C12—S2178.82 (16)C29—N8—C27—S4178.38 (16)
C11—N3—C12—S26.8 (3)C30—N8—C27—S43.5 (3)
C12—N3—C13—C140.6 (2)C27—N7—C28—C290.4 (2)
C11—N3—C13—C14172.64 (19)C26—N7—C28—C29177.09 (19)
N3—C13—C14—N40.2 (2)N7—C28—C29—N80.2 (2)
C12—N4—C14—C130.2 (2)C27—N8—C29—C280.1 (2)
C15—N4—C14—C13178.4 (2)C30—N8—C29—C28178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S40.952.863.797 (2)170
C5—H5B···O40.992.503.470 (3)166
C11—H11B···O3i0.992.583.500 (3)154
C13—H13···S3i0.952.833.715 (2)156
C28—H28···S1ii0.952.873.749 (2)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H22N4O2S2
Mr354.49
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)10.462 (2), 8.6043 (17), 20.249 (4)
β (°) 103.19 (3)
V3)1774.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13494, 6651, 6047
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.03
No. of reflections6651
No. of parameters423
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.43
Absolute structureFlack (1983), with 2303 Friedel pairs
Absolute structure parameter0.06 (5)

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997), HKL SCALEPACK (Otwinowski & Minor 1997) and SORTAV (Blessing 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected torsion angles (º) top
C2—N2—C5—C6109.2 (2)C21—C20—N6—C1775.4 (3)
C7—C11—N3—C12104.4 (2)C25—C26—N7—C2772.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S40.952.863.797 (2)170
C5—H5B···O40.992.503.470 (3)166
C11—H11B···O3i0.992.583.500 (3)154
C13—H13···S3i0.952.833.715 (2)156
C28—H28···S1ii0.952.873.749 (2)155
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarshall, C., Ward, M. F. & Harrison, W. T. A. (2004). Tetrahedron Lett. 45, 5703–5706.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilliamson, C., Storey, J. M. D. & Harrison, W. T. A. (2006). J. Chem. Crystallogr. 36, 277–282.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds